| 研究生: |
蔡佳年 Tsai, Chia-Nien |
|---|---|
| 論文名稱: |
轉換光學之波導設計 Waveguides Design by Using Transformation Optics |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 轉換光學 、超穎材料 、等效介質理論 、聲子晶體 |
| 外文關鍵詞: | Transformation Optics, Metamaterials, Effective Medium Theory, Phononic Crystals |
| 相關次數: | 點閱:216 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉換光學可視為一種有效的計算方法設計轉換介質,並且理想地控制著電磁波的傳播行為。藉此,我們分別設計了具有圓形截面與矩形截面的直線型波導,以及矩形截面的彎曲型波導。透過適當的轉換函數,我們不僅可以使電磁波在傳遞時,電場於邊界上的強度降為零,更可以使能量大幅地集中於波導的截面中心並且降低損耗。
然而,大部轉換光學理論所設計的光學元件,其所需的材料往往具有異向性以及非均質性。倘若要使用一般自然界的材料進行實際製作,具有相當大的難度。在此,我們化簡原本矩形截面之直線型波導的材料參數,並且根據等效介質理論,進一步地利用三種不同的均質材料,以層狀堆疊的結構具體實現了所設計的光學波導。最後,我們再進行數值模擬分析並說明其可行性。
另外,我們也設計與分析了各種轉換光學所衍生的相關元件,例如:光分波器、光干涉器以及遠場區與近場區聚焦的平面透鏡。由於平坦等頻線的聲子晶體將使聲波傳遞時,具有準直的特性。所以,我們進一步透過漸層式的聲子晶體,實現了聲學的遠場區與近場區聚焦之平面透鏡。
轉換光學是一種嶄新的概念,設計各種新式的光學元件。我們也藉此設計各式的光學波導,使電磁波得以平順地傳播而不產生大量的損耗以及訊號的扭曲。
Transformation optics is regarded as an efficient method to control electromagnetic fields through the transformation medium. Accordingly, we design straight waveguide with both circular and rectangular cross sections, and bending waveguide with rectangular section as well. Not only can the electric field be reduced to zero at boundaries but the energy can be concentrated on the center of cross section with less consumption by proper function of coordinate transformation.
Unfortunately, most of optical devices designed by transformation optics require anisotropic and inhomogeneous materials. Thus, the realization would be execessively difficult if common materials in nature are adopted. Nevertheless, we simplify the original transformation media of above straight waveguide with rectangular cross section and realize the waveguide concretely by using three kinds of isotropic material in an alternating layered structure based on the effective medium theory. Finally, we perform numerical simulations to illustrate its functionality.
On the other hand, we also design and analyze other relative optical devices such as beam splitter, optical interferometer and flat lens for far-zone and near-zone focusing. Moreover, we use graded phononic crystals to accomplish acoustic flat lens for far-zone and near-zone focusing at particular frequency since acoustic wave can transmit in a non-diffracted way in virtue of the flat-shaped dispersion surface.
Transformation optics is a new concept used to design a variety of novel optical devices. It is also a mathematical method that we utilize to design different optical waveguides where the electromagnetic wave propagates smoothly without large energy consumption and destruction of signal.
參考文獻
[1] J. B. Pendry, D. Schurig and D. R. Smith, ‘‘Controlling electromagnetic fields’’, Science, Vol. 312, No. 5781, pp. 1780-1782, (2006).
[2] S. A. Cummer, B. Popa, D. Schurig, D. R. Smith and J. B. Pendry, ‘‘Full –wave simulations of electromagnetic cloaking structures’’, Physical Review E, Vol. 74, No. 3, 036621, (2006).
[3] W. X. Jiang, J. Y. Chin and T. J. Cui, ‘‘Anisotropic metamaterial devices’’, Materialstoday, Vol. 12, No. 12, pp. 26-33, (2009).
[4] W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng and J. Y. Chin, ‘‘Arbitrarily elliptical-cylindrical invisible cloaking’’, Journal of Physic D, Vol. 41, No. 19, 085504, (2008).
[5] W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu and T. J. Cui, ‘‘Analytical design conformally invisible cloaks for arbitrarily shaped objects’’, Physical Review E, Vol. 77, No. 6, 066607, (2008).
[6] C. Li, K. Yao, F. Li, ‘‘Two-dimensional electromagnetic cloaks with non- conformal inner and outer boundaries’’, Optics Express, Vol. 16, No. 23, pp. 19366-19374, (2008).
[7] W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu and D. R. Smith, ‘‘Invisibility cloaks without singularity’’, Applied Physics Letters, Vol. 93, No. 19, 194102, (2008).
[8] J. Hu, X. M. Zhou and G. K. Hu, ‘‘Nonsingular two dimensional cloak of arbitrary shape’’, Applied Physics Letters, Vol. 95, No. 1, 011107, (2009).
[9] J. Li, and J. B. Pendry, ‘‘Hiding under the carpet: a new strategy for cloaking’’, Physical Review Letters, Vol. 101, No. 20, 203901, (2008).
[10] Y. G. Ma, C. K. Ong, T. Tyc and U. Leonhardt, ‘‘An omnidirectional retroreflector based on the transmutation of dielectric singularities’’, Nature Materials, Vol. 8, No. 8, pp. 639-642, (2009).
[11] N. Kundtz and D. R. Smith, ‘‘Extreme-angle broadband metamaterial lens’’, Nature Materials, Vol. 9, No. 2, pp. 129-132, (2010).
[12] M. Tsang and D. Psaltis, ‘‘Magnifying lens and superlens by coordinate transformation’’, Physical Review B, Vol. 77, No. 3, 035122, (2008).
[13] W. Wang, L. Lin, X. F. Yang, J. H. Cui, C. L. Du and X. G. Luo, ‘‘Design of oblate cylindrical perfect lens using coordinate transformation’’, Optics Express, Vol. 16, No. 11, pp. 8094-8105, (2008).
[14] L. Lin, W. Wang, J. H. Cui, C. L. Du and X. G. Luo, ‘‘Design of electromagnetic refractor and phase transformer using coordinate transformation theory’’, Optics Express, Vol. 16, No. 10, pp. 6815-6821, (2008).
[15] L. Lin, W. Wang, C. L. Du and X. G. Luo, ‘‘A cone-shaped concentrator with varying performances of concentrating’’, Optics Express, Vol. 16, No. 10, pp. 6809-6814, (2008).
[16] W. Wang, L. Lin, J. X. Ma, C. T. Wang, J. H. Cui, C. L. Du and X. G. Luo, ‘‘Electromagnetic concentrators with reduced material parameters based on coordinate transformation’’, Optics Express, Vol. 16, No. 15, pp. 11431-11437, (2008).
[17] V. G. Veselago, ‘‘The electrodynamics of substances with simultaneously negative values of ε and μ’’, Soviet Physics Uspekhi, Vol. 10, No. 4, pp. 509-514, (1968).
[18] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, ‘‘Extremely Low Frequency Plasmons in Metallic Mesostructures’’, Physical Review Letters, Vol. 76, No. 25, pp. 4773-4776, (1996).
[19] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, ‘‘Low Frequency Plasmons in thin-wire structures’’, Journal of Physics: Condensed Matter, Vol. 10, No. 22, pp. 4785-4809, (1998).
[20] D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser and S. Schultz, ‘‘Loop-wire medium for investigating plasmons at microwave frequencies’’, Applied Physics Letters, Vol. 75, No. 10, pp. 1425-1427, (1999).
[21] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, ‘‘Magnetism from conductors and enhanced nonlinear phenomena’’, IEEE Transactions on microwave theory and techniques, Vol. 47, No. 11, pp. 2075-2084, (1999).
[22] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, ‘‘Composite medium with simultaneously negative permeability and permittivity’’, Physical Review Letters, Vol. 84, No. 18, pp. 4184-4187, (2000).
[23] D. R. Smith and N. Kroll, ‘‘Negative refractive index in left-handed materials’’, Physical Review Letters, Vol. 85, No. 14, pp. 2933-2936, (2000).
[24] D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, ‘‘Determine of effective permittivity and permeability of materials from reflection and transmission coefficients’’, Physical Review B, Vol. 65, No. 19, 195104, (2002).
[25] R. A. Shelby, D. R. Smith and S. Schultz, ‘‘Experimental verification of a negative index of refraction’’, Science, Vol. 292, No. 5514, pp. 77-79, (2001).
[26] C. M. Soukoulis, S. Linden and M. Wegener, ‘‘Negative refractive index at optical wavelengths’’, Science, Vol. 315, No. 5808, pp. 47-49, (2007).
[27] J. B. Pendry, ‘‘Negative refraction makes perfect lens’’, Physical Review Letters, Vol. 85, No. 18, pp. 3966-3969, (2000).
[28] J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang and X. Zhang, ‘‘Imaging visible light using anisotropic metamaterial slab lens’’, Optics Express, Vol. 17, No. 25, pp. 22380-22385, (2009).
[29] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, ‘‘Metamaterial electromagnetic cloak at microwave frequencies’’, Science, Vol. 314, No. 5801, pp. 977-980, (2006).
[30] D. P. Gaillot, C. Croënne and D. Lippens, ‘‘An all-dielectric route for terahertz cloaking’’, Optics Express, Vol. 16, No. 6, pp. 3986-3992, (2008).
[31] B. Edwards, A. Alù, M. G. Silveirinha and N. Engheta, ‘‘Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials’’, Physical Review Letters, Vol. 103, No. 15, 153901, (2009).
[32] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui and D. R. Smith, ‘‘Broadband ground-plane cloak’’, Science, Vol. 323, No. 5912, pp. 366-369, (2009).
[33] G. W Milton, M. Briane and J. R. Willis, ‘‘On cloaking for elasticity and physical equations with a transformation invariant form’’, New Journal of Physics, Vol. 8, No. 10, 248, (2006).
[34] S. A. Cummer and D. Schurig, ‘‘One path to acoustic cloaking’’, New Journal of Physics, Vol. 9, No. 3, 45, (2007).
[35] H. Y. Chen and C. T. Chan, ‘‘Acoustic cloaking in three dimensions using acoustic metamaterials’’, Applied Physics Letters, Vol. 91, No. 18, 183518, (2007).
[36] S. A. Cummer, M. Rahm and D. Schurig, ‘‘Material parameters and vectors scaling in transformation acoustics’’, New Journal of Physics, Vol. 10, No. 11, 115025, (2008).
[37] Z. Y. Liu, X. X. Zheng, Y. W. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan and P. Sheng, ‘‘Locally resonant sonic materials’’, Science, Vol. 289, No. 5485, pp. 1734-1736, (2000).
[38] N. Fang, D. J. Xi, J. Y. Xu, M. Ambati, W. Srituravanich, C. Sun and X. Zhang, ‘‘Ultrasonic metamaterials with negative modulus’’, Nature Materials, Vol. 5, No. 6, pp. 452-456, (2006).
[39] J. Li and C. T. Chan, ‘‘Double-negative acoustic metamaterial’’, Physical Review E, Vol. 70, No. 5, 055602, (2004).
[40] S. Zhang, L. L. Yin and N. Fang, ‘‘Focusing ultrasound with an acoustic metamaterial network’’, Physical Review Letters, Vol. 102, No. 19, 194301, (2009).
[41] J. B. Pendry and J. Li, ‘‘An acoustic metafluid: realizing a broadband acoustic cloak’’, New Journal of Physics, Vol. 10, No. 11, 115032, (2008).
[42] E. Yablonovitch, ‘‘Inhibited spontaneous emission in solid-state physics and electronics’’, Physical Review Letters, Vol. 58, No. 20, pp. 2059-2062, (1987).
[43] S. John, ‘‘Strong localization of photons in certain disordered dielectric superlattices’’, Physical Review Letters, Vol. 58, No. 23, pp. 2486-2489, (1987).
[44] E. Yablonovitch and T. J. Gmitter, ‘‘Photonic band structure: the face-centered-cubic case’’, Journal of the Optical Society of America A, Vol. 7, No. 9, pp. 1792-1800, (1990).
[45] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and J. Bur, ‘‘A three-dimensional photonic crystal operating at infrared wavelengths’’, Nature, Vol. 394, No. 6690, pp. 251-253, (1998).
[46] C. Y. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, ‘‘All-angle negative refraction without negative effective index’’, Physical Review B, Vol. 65, No. 20, 201104, (2002).
[47] E. Cubukcu, K. Aydin and E. Ozbay, S. Foteinopolou and C. M. Soukoulis, ‘‘Subwavelength resolution in a two-dimensional photonic-crystal-based superlens’’, Physical Review Letters, Vol. 91, No. 20, pp. 207401, (2003).
[48] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, ‘‘High transmission through sharp bends in photonic crystals waveguides’’, Physical Review Letters, Vol. 77, No. 18, pp. 3787-3790, (1996).
[49] J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, ‘‘All-silica single-mode optical fiber with photonic crystal cladding’’, Optics Letters, Vol. 21, No. 19, pp. 1547-1549, (1996).
[50] J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell, ‘‘Photonic band gap guidance in optical fibers’’, Science, Vol. 282, No. 5393, pp. 1476-1478, (1998).
[51] M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden and M. Wegener, ‘‘Photonic metamaterials by direct laser writing and silver chemical vapour deposition’’, Nature Materials, Vol. 7, No. 7, pp. 543-546, (2008).
[52] L. H. Gabrielli, J. Cardenas, C. B. Poitras and M. Lipson, ‘‘Silicon nanostructure cloak operating at optical frequencies’’, Nature Photonics, Vol. 3, No. 8, pp. 461-463, (2009).
[53] J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, ‘‘An optical cloak made of dielectric’’, Nature Materials, Vol. 8, No. 7, pp. 568-571, (2009).
[54] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry and M. Wegener, ‘‘Three-dimensional invisibility cloak at optical wavelengths’’, Science, Vol. 328, No. 5976, pp. 337-339, (2010).
[55] U. Leonhardt and T. G. Philbin, ‘‘General relativity in electrical engineering’’, New Journal of Physics, Vol. 8, No. 10, 247, (2006).
[56] D. Schurig, J. B. Pendry and D. R. Smith, ‘‘Calculation of material properties and ray tracing in transformation media’’, Optics Express, Vol. 14, No. 21, pp. 9794-9804, (2006).
[57] A. J. Ward and J. B. Pendry, ‘‘Refraction and geometry in Maxwell’s equations’’, Journal of modern optics, Vol. 43, No. 4, pp. 773-793, (1996).
[58] U. Leonhardt, ‘‘Optical conformal mapping’’, Science, Vol. 312, No. 5781, pp. 1777-1780, (2006).
[59] U. Leonhardt, ‘‘Notes on conformal invisibility devices’’, New Journal of Physics, Vol. 8, No. 7, 118, (2006).
[60] W. Yan, M. Yan and M. Qiu, ‘‘Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens’’, Physical Review B, Vol. 79, No. 16, 161101, (2009).
[61] J. B. Pendry and S. A. Ramakrishna, ‘‘Focusing light using negative refraction’’, Journal of Physics: Condensed Matter, Vol. 15, No. 37, pp. 6345-6364, (2003).
[62] D. J. Bergman, ‘‘The dielectric constant of a composite material--A problem in classical physics’’, Physics Reports, Vol. 43, No. 9, pp. 377-407, (1978).
[63] S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, ‘‘Imaging the near field’’, Journal of Modern Optics, Vol. 50, No. 9, pp. 1419-1430, (2003).
[64] B. Wood, J. B. Pendry and D. P. Tsai, ‘‘Directed subwavelength imaging a layered metal-dielectric system’’, Physical Review B, Vol. 74, No. 11, 115116, (2006).
[65] S. H. Han, Y. Xiong, D. Genov, Z. W. Liu, G. Bartal and X. Zhang, ‘‘Ray optics at a deep-subwavelength scale: a transformation optics approach’’, Nano Letters, Vol. 8, No. 12, pp. 4243-4247, (2008).
[66] S. Xi, H. S. Chen, B. I. Wu and J. A. Kong, ‘‘One-directional perfect cloak created with homogeneous material’’, IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, pp. 131-133, (2009).
[67] C. W. Qiu, L. Hu, X. F. Xu and Y. J. Feng, ‘‘Spherical cloaking with homogeneous isotropic multilayered structures’’, Physical Review E, Vol. 79, No. 4, 047602, (2009).
[68] J. Li, L. Fok, X. B. Yin, G. Bartal and X. Zhang, ‘‘Experimental demonstration of an acoustic magnifying hyperlens’’, Nature Materials, Vol. 8, No. 12, pp. 931-934, (2009).
[69] D. Torrent and S. D. José, ‘‘Anisotropic mass density by two-dimensional acoustic metamaterials’’, New Journal of Physics, Vol. 10, No. 2, 023004, (2008).
[70] Z. Y. Wang, Y. Luo, W. Z. Cui, W. Ma, L. Peng, J. T. Huangfu, H. S. Chen and L. X. Ran, ‘‘Controlling the field distribution in waveguides with transformation optics’’, Applied Physics Letters, Vol. 94, No. 23, 234101, (2009).
[71] W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, ‘‘Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials’’, Physical Review E, Vol. 78, No. 6, 066607, (2008).
[72] Y. Huang, Y. J. Feng and T. Jiang, ‘‘Electromagnetic cloaking by layered structure of homogeneous isotropic materials’’, Optics Express, Vol. 15, No. 18, pp. 11133-11141, (2007).
[73] M. Farhat, S. Guenneau and S. Enoch, ‘‘Ultrabroadband elastic cloaking in thin plates’’, Physical Review Letters, Vol. 103, No. 2, 24301, (2009).
[74] X. J. Wu, Z. F. Lin, H. Y. Chen and C. T. Chan, ‘‘Transformation optical design of a bending waveguide by use of isotropic materials’’, Applied Opticss, Vol. 48, No. 31, G101-G105, (2009).
[75] D. H. Kwon and D. H. Werner, ‘‘Transformation optical designs for wave collimators, flat lenses and right-angle bends’’, New Journal of Physics, Vol. 10, No. 11, 115023, (2008).