簡易檢索 / 詳目顯示

研究生: 蔡揖安
Tsai, Yi-An
論文名稱: 港口排放清單減量策略分析-以高雄港為例
The Analysis of Reduction Strategies on Port Emissions Inventory -A Case of Kaohsiung Port
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 高雄港港口排放清單岸電燃料替換國家自訂預期貢獻溫室氣體管理辦法
外文關鍵詞: Port of Kaohsiung, port emissions inventory, OPS, fuel transfer, INDC, Greenhouse Gas Reduction Act
相關次數: 點閱:83下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減輕港口空氣污染對港區周遭居民與環境所造成的負面影響,本研究以高雄港為研究主體,評估貨櫃船、散裝船、油輪、拖車頭與裝卸機具之排放量,並提出兩階段之港口排放清單減量策略。第一階段以《國家自訂預期貢獻》的標準為目標,希望在2030年將高雄港港口排放清單之排放量減低至2005年排放量的80%,而減量策略包含:船舶減速、停泊船隻使用岸電、50%的拖車頭使用液態天然氣(LNG)和50%的裝卸機具進行電氣化;第二階段則以《溫室氣體管理辦法》的標準為目標,希望在2050年將高雄港港口排放清單之排放量減低至2005年排放量的50%。而第二階段減量策略則包含:船舶減速、使用岸電、燃料替換、所有拖車頭使用液態天然氣(LNG)和所有裝卸機具進行電氣化。
    研究結果發現,與2005年高雄港的排放量相比,實施第一階段減量策略可以分別降低高雄港港口排放清單(CO2、CH4、N2O、PM10、PM2.5、NOx和SOX)46%、26%、25%、77%、77%、76%和68%的排放量,所有氣體皆可達成第一階段減量的目標。此外,與2005年相比,第一階段減量策略可以減少11.1億美元的外部成本,降幅達到73%。繼續與2005年的排放量相比,實施第二階段減量策略可分別減少排放清單 (CO2、CH4、N2O、PM10、PM2.5、NOx和SOX) 57%、59%、53%、79%、79%、80%和69%的排放量,所有氣體皆可達成第二階段的減量目標。此外,與2005年相比,實施第二階段減量策略,可以減少11.6億美元的外部成本,降幅達到76%。
    若以減少港口溫室氣體的排放為目標,本研究建議優先實施船舶燃料替換的策略,CO2、CH4和N2O可分別降低21%、21%和50%。如果是以降低懸浮微粒和有害氣體為目標,本研究則建議優先實施岸電(OPS),PM10、PM2.5、NOx和SOX可分別降低75%、75%、72%和73%。

    Abstract
    In order to reduce the negative impact of emissions inventory on residents and the environment around the port, this study set Kaohsiung port as evaluative port to evaluate the emission that generated by vessels, truck tractors and cranes. Moreover, this study also drafted reduction strategies in two stages to improve the air quality of Port of Kaohsiung. First stage targets the standard of Intended Nationally Determined Contributions (INDC), hoping to decline the 20% of emissions in 2030 compared to 2005. The reduction strategies including reducing the speed and using the OPS on vessels;transferring the fuel on half of the cranes and truck tractors. Besides, second stage targets the standard of Greenhouse Gas Reduction Act, hoping to decline 50% of emissions in 2050 compared to 2005. The reduction strategies including vessel deceleration and OPS;transferring the fuel on all the vessels, cranes and truck tractors.
    The study found that after implemented first stage reduction strategies, port emissions inventory (CO2, CH4, N2O, PM10, PM2.5, NOX and SOX) in 2030 would decrase 46%, 26%, 25%, 77%, 77%, 76% and 68%, respectively compared to 2005. Moreover, the external cost could decline 1.11 billion USD. Furthermore, implemented second stage reduction strategies could decrease port emissions inventory (CO2, CH4, N2O, PM10, PM2.5, NOX and SOX) 57%, 59%, 53%, 79%, 79%, 80% and 69%, respectively in 2050 compared to 2005. And the external cost could decline 1.16 billion USD.
    If target to reduce greenhouse gases from the Port, this study suggests to implement fuel transfer on vessels because the emission of CO2, CH4 and N2O can be reduced by 21%、21% and 50%, respectively. However, if target to reduce PM and harmful gases, this study suggests to carry out OPS, which can reduce PM10, PM2.5, NOX and SOX by 75%, 75%, 72%, and 73%, respectively.

    目錄 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 6 1.3 研究目的 9 1.4 研究架構 9 第二章 文獻回顧 11 2.1 港口空氣污染和汙室氣體排放量之計算模型 11 2.2 港口產生的空氣汙染與溫室氣體對港區周遭之負面影響與成本 12 2.3 港口溫室氣體與空氣污染之相關減量策略 14 2.4 灰預測模型 18 2.5 小結 19 第三章 研究方法 27 3.1資料蒐集 27 3.2 變數說明 29 3.3活動基礎模型 31 3.4 預測模型 34 3.5 小結 36 第四章 實證分析 37 4.1 基礎情境(BAU)下高雄港港口排放清單之排放量 37 4.2 第一階段港口排放清單減量策略 46 4.3 第二階段港口排放清單減量策略 53 4.4港口排放清單之外部成本 59 4.5小結 62 第五章 結論與建議 64 5.1 結論 64 5.2 建議 66 5.3 研究限制 67 5.4 未來研究方向 68 參考文獻 69

    參考文獻
    Berechman, J., & Tseng, P. H. (2012). Estimating the environmental costs of port related emissions: The case of Kaohsiung. Transportation Research Part D: Transport and Environment, 17(1), 35-38.
    Bouman, E. A., Lindstad, E., Rialland, A. I., & Stromman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transportation Research Part D: Transport and Environment, 52, 408-421.
    Cariou, P. (2011). Is slow steaming a sustainable means of reducing CO2 emissions from container shipping? Transportation Research Part D: Transport and Environment, 16(3), 260-264.
    Chang, C. C., & Wang, C. M. (2012). Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan. Transportation Research Part D: Transport and Environment, 17(3), 185-189.
    Chang, C. C., & Jhang, C. W. (2016). Reducing speed and fuel transfer of the Green Flag Incentive Program in Kaohsiung Port Taiwan. Transportation Research Part D: Transport and Environment, 46, 1-10.
    Chang, Y. T., Song, Y., & Roh, Y. (2013). Assessing greenhouse gas emissions from port vessel operations at the Port of Incheon. Transportation Research Part D: Transport and Environment, 25, 1-4.
    Chen, D., Wang, X., Nelson, P., Li, Y., Zhao, Y., Lang, J., Zhou, Y., & Guo, X. (2017). Ship emission inventory and its impact on the PM2.5 air pollution in Qingdao Port, North China. Atmospheric Environment, 166(Supplement C), 351-361.
    Corbett, J. J., Winebrake, J. J., Green, H. E., Kasibhatla, P., Eyring, V., & Lauer, A. (2007). Mortality from Ship Emissions: A Global Assessment. Environmental Science & Technology, 41(24), 8512-8518.
    Ding, S., Dang, Y. G., Li, X. M., Wang, J. J., & Zhao, K. (2017). Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model. Journal of Cleaner Production, 162, 1527-1538.
    Eide, M. S., Endresen, Ø., Skjong, R., Longva, T., & Alvik, S. (2009). Cost-effectiveness assessment of CO2 reducing measures in shipping. Maritime Policy & Management, 36(4), 367-384.
    Endresen, Ø., Sorgard, E., Behrens, L. H., Brett, P. O., & Isaksen, I. S. A. (2007). A historical reconstruction of ships' fuel consumption and emissions. Journal of Geophysical Research: Atmospheres, 112(D12), 527-538.
    Environmental Protection Administration Executive Yuan. (2015). INDC in Taiwan. Retrieved Jan 5, 2018, from https://www.bsigroup.com/LocalFiles/zh-tw/Event/2015/Sustainability-annual/02-epa.pdf.
    FleetMon. (2018). Global Ship Tracking. Retrieved Mar 5, 2018, from https://www.fleetmon.com/.Han, S., Youn, J. S., Kim, W. J., Seo, Y. H., & Jung, Y. W. (2011). Estimation of Air Pollutant Emissions from Port-Related Sources in the Port of Incheon.
    IMO. (2014). Third IMO Greenhouse Gas Study 2014.Retrieved Feb 3, 2018, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Third%20Greenhouse%20Gas%20Study/GHG3%20Executive%20Summary%20and%20Report.pdf.
    IEA. (2017). CO2 Emissions From Fuel Combustion - Highlight. Retrieved Dec 28, 2017, from https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf.
    IPCC. (2014). Climate Change 2014: Fifth Assessment Report. Retrieved Jan 20, 2018, from http://www.ipcc.ch/report/ar5/.
    IPCC. (2018). Emission Factors for Greenhouse Gas Inventory. Retrieved Jan 22, 2018, from https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf.
    López-Aparicio, S., Tonnesen, D., Thanh, T. N., & Neilson, H. (2017). Shipping emissions in a Nordic port: Assessment of mitigation strategies. Transportation Research Part D: Transport and Environment, 53, 205-216.
    Maragkogianni, A., & Papaefthimiou, S. (2015). Evaluating the social cost of cruise ships air emissions in major ports of Greece. Transportation Research Part D: Transport and Environment, 36, 10-17.
    McArthur, D. P., & Osland, L. (2013). Ships in a city harbour: An economic valuation of atmospheric emissions. Transportation Research Part D: Transport and Environment, 21, 47-52.
    Marine Insight. (2017). Port of Long Beach Green Flag Program Improves Air for 11 Years. Retrieved Dec 23, 2017, from https://www.marineinsight.com/shipping-news/port-of-long-beach-green-flag-program-improves-air-for-11-years/.
    MarineTraffic. (2018a). BOW FULING. Retrieved Jan 17, 2018, fromhttps://www.marinetraffic.com/en/ais/details/ships/shipid:5627050/mmsi:566508000/vessel:BOW%20FULING.
    MarineTraffic. (2018b). EVER BALMY. Retrieved Jan 19, 2018, from https://www.marinetraffic.com/en/ais/details/ships/shipid:5218155/mmsi:416031000/imo:9786944/vessel:EVER%20BALMY.
    MarineTraffic. (2018c). ROADRUNNER BULKER. Retrieved Jan 19, 2018, from https://www.marinetraffic.com/en/ais/details/ships/shipid:713536/mmsi:538004340/imo:9441415/vessel:ROADRUNNER_BULKER.
    MarineTraffic. (2018d). TAI HWA. Retrieved Jan 19, 2018, from https://www.marinetraffic.com/en/ais/details/ships/shipid:652924/mmsi:416100010/vessel:TAI%20HWA.
    Norsworthy, M., & Craft, E. (2013). Emissions reduction analysis of voluntary clean truck programs at US ports. Transportation Research Part D: Transport and Environment, 22, 23-27.
    NOAA. (2016). Annual Greenhouse Gas Index. Retrieved May 8, 2018, from https://www.esrl.noaa.gov/gmd/aggi/.
    Psaraftis, H. N., & Kontovas, C. A. (2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15(8), 458-462.
    PBL Netherlands Environmental Assessment Agency. (2017). Trends In Global CO2 and Total Greenhouse Gas Emissions. Retrieved May 13, 2018, from http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-trends-in-global-co2-and-total-greenhouse-gas-emissons-2017-report_2674.pdf.
    Port of Seattle. (2017). Northwest Ports Clean Air Strategy. Retrieved Mar 8, 2018, fromhttps://www.nwseaportalliance.com/sites/default/files/final_2015_implementation_report_version_3-14-2017.pdf.
    Port of Long Beach & Port of Los Angeles. (2017). Clean Air Action Plan Update Released 2017. Retrieved Mar 16, 2018, from http://www.cleanairactionplan.org/news/2017-clean-air-action-plan-update-released/.
    Port of Kaohsiung Taiwan International Port Corporation. (2018). Annual Statistical Report of Kaohsiung Port – 2017. Retrieved May 9, 2018, from https://kh.twport.com.tw/Upload/B/RelFile/CustomPage/201/c7975f06-bffc-4142-9d34-9c3933643db0.pdf.
    Port of Long Beach. (2017). Press Releases. Retrieved Feb 22, 2018, from http://www.polb.com/news/archive/2017.asp.
    Schrooten, L., Vlieger, I. D., Panis, L. I., Chiffi, C., & Pastori, E. (2009). Emissions of maritime transport: A European reference system. Science of The Total Environment, 408(2), 318-323.
    Sciberras, E. A., Zahawi, B., Atkinson, D. J., Juando, A., & Sarasquete, A. (2016). Cold ironing and onshore generation for airborne emission reductions in ports. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 67-82.
    Sen, B., Ercan, T., & Tatari, O. (2017). Does a battery-electric truck make a difference? – Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of Cleaner Production, 141, 110-121.
    Song, S. (2014). Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmospheric Environment, 82(Supplement C), 288-297.
    Styhre, L., Winnes, H., Black, J., Lee, J., & Griffin, H. L. (2017). Greenhouse gas emissions from ships in ports – Case studies in four continents. Transportation Research Part D: Transport and Environment, 54(Supplement C), 212-224.
    Tian, L., Ho, K., Louie, P. K. K., Qiu, H., Pun, V. C., Kan, H., Yu, I. T. S. & Wang, T. W. (2013). Shipping emissions associated with increased cardiovascular hospitalizations. Atmospheric Environment, 74, 320-325.
    Tichavska, M., & Tovar, B. (2015). Environmental cost and eco-efficiency from vessel emissions in Las Palmas Port. Transportation Research Part E: Logistics and Transportation Review, 83(Supplement C), 126-140.
    Tzannatos, E. (2010a). Cost assessment of ship emission reduction methods at berth: the case of the Port of Piraeus, Greece. Maritime Policy & Management, 37(4), 427-445.
    Tzannatos, E. (2010b). Ship emissions and their externalities for the port of Piraeus – Greece. Atmospheric Environment, 44(3), 400-407.
    Ushakov, S., Halverson, N. G. M., Valland, H., Williksen, D. H., & Esoy, V. (2013). Emission characteristics of GTL fuel as an alternative to conventional marine gas oil. Transportation Research Part D: Transport and Environment, 18, 31-38.
    UNCTAD. (2017). Review of Maritime Transport 2017. Retrieved Jan 21, 2018, from http://unctad.org/en/PublicationsLibrary/rmt2017_en.pdf?user=46.
    USEPA. (2010). Annual Report. Retrieved Dec 27, 2017, from https://www.epa.gov/sites/production/files/2013-12/documents/annual-report-2010.pdf.VOWTAP. (2017). Virginia Offshore Wind Technology Advancement Power. Retrieved Feb 9, 2018, from https://www.osti.gov/servlets/purl/1341588.
    Wang, Z. X., & Hao, P. (2016). An improved grey multivariable model for predicting industrial energy consumption in China. Applied Mathematical Modelling, 40(11), 5745-5758.
    Winnes, H., Styhre, L., & Fridell, E. (2015). Reducing GHG emissions from ships in port areas. Research in Transportation Business & Management, 17(Supplement C), 73-82.
    Xiao, X., Yang, J., Mao, S., & Wen, J. (2017). An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow. Applied Mathematical Modelling, 51, 386-404.
    Xu, N., Dang, Y., & Gong, Y. (2017). Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China. Energy, 118, 473-480.

    下載圖示 校內:2023-01-03公開
    校外:2023-01-03公開
    QR CODE