| 研究生: |
蔣宛蓉 Chiang, Wan-Jung |
|---|---|
| 論文名稱: |
扭曲的電子供體/電子受體分子:合成及性質 A Twisted Electron Donor / Electron Acceptor Molecule : Synthesis and Properties |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 光誘導電子轉移 、光誘導能量轉移 、扭曲分子 |
| 外文關鍵詞: | Photoinduced Electron Transfer, Photoinduced Energy Transfer, Twisted molecule |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對可再生能源的興起需求以及推動減少碳排放量的環保意識抬頭,引起人們對人工模擬光合作用系統設計感到興趣。 D-A(供體-受體)發色團的激發態會受到許多因素而影響到其結構弛豫,因而影響激發態的性質。連接D和A基團的鍵的會旋轉,引起大家的興趣,因為它通常對激發態特性具有最顯著的影響,例如分子內電荷轉移 (intramolecular charge transfer)的情形等。
在本實驗,我們設計了一個簡單的D-A分子,將苯環(Donor)進行官能基團修飾,希望其D和A基團在激發態也能保持交錯。我們使用三個氧甲基修飾後,D-A分子成75.61º錯開,因此,我們使用吸收光譜及放射光譜觀察到其分子有進行電子轉移,並解釋本實驗D-A分子隨溶劑極性大而藍位移的原因和發現D-A分子具有Charge transfer absorption,因為D和A group 之的共價鍵而造成的特殊吸收,因此再一次證明有電荷的轉移產生。最後,我們再利用各光譜說明此分子具有能量轉移的現象,並推測其能量轉移的機制。
The rise of demand for renewable energy and the promotion of environmental awareness to reduce carbon emissions have aroused interest in the design of artificially simulated photosynthesis systems. The excited state of the D-A (donor-acceptor) chromophore is affected by many factors that affect its geometric relaxation, and therefore the nature of the excited state. The bond connecting the D and A groups could rotate, which usually has significant effect on the excited state properties, such as intramolecular charge transfer.
In this experiment, we designed a simple D-A molecule, modified the benzene ring (Donor) with functional groups, as shown in Figure 1, hoping that the D and A groups can also remain staggered in the excited state. It can be seen from Mercury diagram that after modification with functional groups, D-A molecule is staggered by 75.61º. Therefore, we used absorption spectrum, emission spectrum to observe the electron transfer of the molecule, and explained the reason for the blue shift of the D-A molecule with the polarity of the solvent. In this experiment, we even found the D-A molecule has charge transfer absorption because there has a covalent bond between the donor and acceptor group. Finally, we used spectroscopy to show that this molecule has an energy transfer phenomenon even though the structure is twisted and speculated on its energy transfer mechanism.
1. Reichardt, C., Chem. Rev., 1994, 94: p. 2319-2358.
2. Kumpulainen, T., et al., Chem Rev.,2017.117:p.10826-10939.
3. Fan, L.-J. and W.E. Jones, J. Phys. Chem. B, 2006. 110: p. 7777-7782.
4. Stryer, L. and R.P. Haugland, PNAS USA, 1967.58:p.719-726.
5. Nijegorodov, N., R. Mabbs, and D.P. Winkoun, Spectrochim. Acta A, 2003. 59: p. 595-606.
6. Benniston, A.C., et al., J. Am. Chem. Soc, 2005. 127: p. 16054-16064.
7. Ziessel, R., et al., Chem. Eur. J., 2005. 11: p.7366-7378.
8. Tsudaka, T., et al., Chem. Eur. J., 2017. 23: p.1306-1317.
9. Fukuzumi, S., K. Ohkubo, and T. Suenobu, Acc. Chem. Res., 2014. 47: p. 1455-1464.
10. Fukuzumi, S., et al., J. Am. Chem. Soc., 2004. 126: p. 1600-1601.
11. Rappoport, D. and F. Furche, J. Am. Chem. Soc., 2004. 126: p. 1277-1284.
12. Zachariasse, K.A., et al., J. Am. Chem. Soc., 2004. 126: p. 1705-1715.
13. Schuddeboom, W., et al., J. Phys. Chem., 1992. 96: p. 10809-10819.
14. Sobolewski, A.L. and W. Domcke, Chem. Phys. Lett., 1996. 259: p. 119-127.
15. Köhler, G., P. Wolschann, and K. Rotkiewicz, Proc. Indian Acad. Sci. (Chem. Sci.), 1992. 104: p. 197.
16. Rotkiewicz, K., K.H. Grellmann, and Z.R. Grabowski, Chem. Phys. Lett., 1973. 19: p. 315-318.
17. Ito, A., S. Ishizaka, and N. Kitamura, Phys. Chem. Chem. Phys., 2010. 12: p. 6641-6649.
18. Chudoba, C., et al., Chem. Phys. Lett., 1999. 309: p. 357-363.
19. Dobkowski, J., et al., J. Am. Chem. Soc., 2002. 124: p. 2406-2407.
20. Ma, C., et al., Journal of Photochemistry and Photobiology A: Chemistry, 2001. 142: p. 177-185.
21. Jiang, W., et al., ACS Catal.. 2018. 8: p. 2209-2217.
22. Zhou, P., J. Yu, and M. Adv. Mater., 2014. 26: p. 4920-4935.
23. Fereja, T.H., A. Hymete, and T. Gunasekaran, ISRN Spectroscopy, 2013. 2013: p. 230858.
24. Noomnarm, U. and R.M. Clegg, Photosynth Res , 2009. 101: p. 181-194.
25. Turro, N.J., Modern Molecular Photochemistry. 1991: Benjamin/Cummings Publishing Company.
26. Lakowicz, J.R., Principles of fluorescence spectroscopy. 3rd ed.. ed, ed. SpringerLink. 2006, New York: New York : Springer.
27. Dance, Z.E.X., et al., J. Phys. Chem. A, 2008. 112: p. 4194-4201.
28. Maus, M., et al., J. Phys. Chem. A, 1999. 103: p.3388-3401.
29. Grabowski, Z.R., K. Rotkiewicz, and W. Rettig, Chem. Rev., 2003. 103: p. 3899-4032.
30. Nagakura, S., Molecular Physics, 1960. 3: p. 105-113.
31. Davis, H.F., S.K. Chattopadhyay, and P.K. Das, J.Phys.Chem., 1984. 88: p. 2798-2803.
32. Strieth-Kalthoff, F., et al., Chem.Soc.Rev., 2018. 47. 7190-7202.
33. Tadross, P.M., et al., Org. Lett., 2010. 12: p. 1224-1227.
34. Hogan, D.T. and T.C. J. Phys. Chem. Lett., 2018. 9: p. 2825-2829.
35. Nobutaka, S., et al., Chem. Soc. Jpn, 1983. 56: p. 1519-1521.
36. Peter H. Homann., Plant Physiol, 1969. 44: p. 932-93.