簡易檢索 / 詳目顯示

研究生: 蔣宛蓉
Chiang, Wan-Jung
論文名稱: 扭曲的電子供體/電子受體分子:合成及性質
A Twisted Electron Donor / Electron Acceptor Molecule : Synthesis and Properties
指導教授: 宋光生
Sung, Kuang-Sen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 光誘導電子轉移光誘導能量轉移扭曲分子
外文關鍵詞: Photoinduced Electron Transfer, Photoinduced Energy Transfer, Twisted molecule
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對可再生能源的興起需求以及推動減少碳排放量的環保意識抬頭,引起人們對人工模擬光合作用系統設計感到興趣。 D-A(供體-受體)發色團的激發態會受到許多因素而影響到其結構弛豫,因而影響激發態的性質。連接D和A基團的鍵的會旋轉,引起大家的興趣,因為它通常對激發態特性具有最顯著的影響,例如分子內電荷轉移 (intramolecular charge transfer)的情形等。
    在本實驗,我們設計了一個簡單的D-A分子,將苯環(Donor)進行官能基團修飾,希望其D和A基團在激發態也能保持交錯。我們使用三個氧甲基修飾後,D-A分子成75.61º錯開,因此,我們使用吸收光譜及放射光譜觀察到其分子有進行電子轉移,並解釋本實驗D-A分子隨溶劑極性大而藍位移的原因和發現D-A分子具有Charge transfer absorption,因為D和A group 之的共價鍵而造成的特殊吸收,因此再一次證明有電荷的轉移產生。最後,我們再利用各光譜說明此分子具有能量轉移的現象,並推測其能量轉移的機制。

    The rise of demand for renewable energy and the promotion of environmental awareness to reduce carbon emissions have aroused interest in the design of artificially simulated photosynthesis systems. The excited state of the D-A (donor-acceptor) chromophore is affected by many factors that affect its geometric relaxation, and therefore the nature of the excited state. The bond connecting the D and A groups could rotate, which usually has significant effect on the excited state properties, such as intramolecular charge transfer.

    In this experiment, we designed a simple D-A molecule, modified the benzene ring (Donor) with functional groups, as shown in Figure 1, hoping that the D and A groups can also remain staggered in the excited state. It can be seen from Mercury diagram that after modification with functional groups, D-A molecule is staggered by 75.61º. Therefore, we used absorption spectrum, emission spectrum to observe the electron transfer of the molecule, and explained the reason for the blue shift of the D-A molecule with the polarity of the solvent. In this experiment, we even found the D-A molecule has charge transfer absorption because there has a covalent bond between the donor and acceptor group. Finally, we used spectroscopy to show that this molecule has an energy transfer phenomenon even though the structure is twisted and speculated on its energy transfer mechanism.

    中文摘要 I 英文摘要 ii 誌謝 xi 目錄 xii 表目錄 xiv 圖目錄 xv 第I章 緒論 1 I-1 前言 1 I-2 Z-scheme 5 I-3發光材料之放光機制 8 I-4 光誘導電荷轉移 (Photoinduced Charge Transfer,PCT) 11 I-5光誘導電子轉移 (Photoinduced electron Transfer,PET) 12 I-6光誘導能量轉移( Photoinduced Energy Transfer ) 14 I-7 實驗動機 17 第II章 結果與討論 18 II-1 MAT (6) 之合成 18 II-2 MTA (6) 之晶體結構解析 20 II-3 Electron transfer 22 II-3-1 MTA (6)及Anisole acridinium (10)具有藍移現象 22 II-3-2從螢光量子產率以及螢光放射光譜的間接證明MTA (6)及Anisole acridinium (10) 具有PET 26 II-3-3利用吸收光譜證明Charge transfer absorption 31 II-3-4利用螢光放射光譜證明Anisole和TMOB的Quench能力與濃度有關 35 II-4 Energy transfer 36 II-4-1 利用Donor (D) 和Acceptor (A)之間吸收光譜以及螢光光譜的關係,判斷Energy transfer發生條件 36 II-4-2利用Energy donor的螢光光譜是否與Energy acceptor的吸收光譜重疊進行判斷Energy transfer發生條件 41 II-4-3 Energy donor具有大的螢光量子產率 46 II-4-4 Energy acceptor要有好的螢光可以被偵測到 46 II-4-5根據D-A分子的激發光譜以及Donor的吸收光譜判斷是否有Energy transfer的訊號產生 46 第III章 實驗儀器與實驗步驟 54 III-1 實驗儀器及測量方法 54 III-2 MTA (6)之合成 55 III-3 Anisole acridinium (10)之合成 60 III-4 10-methylacridinium methyl sulfate (11)之合成 64 實驗藥品清單 65 參考文獻 66 附錄 69

    1. Reichardt, C., Chem. Rev., 1994, 94: p. 2319-2358.

    2. Kumpulainen, T., et al., Chem Rev.,2017.117:p.10826-10939.

    3. Fan, L.-J. and W.E. Jones, J. Phys. Chem. B, 2006. 110: p. 7777-7782.

    4. Stryer, L. and R.P. Haugland, PNAS USA, 1967.58:p.719-726.

    5. Nijegorodov, N., R. Mabbs, and D.P. Winkoun, Spectrochim. Acta A, 2003. 59: p. 595-606.

    6. Benniston, A.C., et al., J. Am. Chem. Soc, 2005. 127: p. 16054-16064.

    7. Ziessel, R., et al., Chem. Eur. J., 2005. 11: p.7366-7378.

    8. Tsudaka, T., et al., Chem. Eur. J., 2017. 23: p.1306-1317.

    9. Fukuzumi, S., K. Ohkubo, and T. Suenobu, Acc. Chem. Res., 2014. 47: p. 1455-1464.

    10. Fukuzumi, S., et al., J. Am. Chem. Soc., 2004. 126: p. 1600-1601.

    11. Rappoport, D. and F. Furche, J. Am. Chem. Soc., 2004. 126: p. 1277-1284.

    12. Zachariasse, K.A., et al., J. Am. Chem. Soc., 2004. 126: p. 1705-1715.

    13. Schuddeboom, W., et al., J. Phys. Chem., 1992. 96: p. 10809-10819.

    14. Sobolewski, A.L. and W. Domcke, Chem. Phys. Lett., 1996. 259: p. 119-127.

    15. Köhler, G., P. Wolschann, and K. Rotkiewicz, Proc. Indian Acad. Sci. (Chem. Sci.), 1992. 104: p. 197.

    16. Rotkiewicz, K., K.H. Grellmann, and Z.R. Grabowski, Chem. Phys. Lett., 1973. 19: p. 315-318.

    17. Ito, A., S. Ishizaka, and N. Kitamura, Phys. Chem. Chem. Phys., 2010. 12: p. 6641-6649.

    18. Chudoba, C., et al., Chem. Phys. Lett., 1999. 309: p. 357-363.

    19. Dobkowski, J., et al., J. Am. Chem. Soc., 2002. 124: p. 2406-2407.

    20. Ma, C., et al., Journal of Photochemistry and Photobiology A: Chemistry, 2001. 142: p. 177-185.

    21. Jiang, W., et al., ACS Catal.. 2018. 8: p. 2209-2217.

    22. Zhou, P., J. Yu, and M. Adv. Mater., 2014. 26: p. 4920-4935.

    23. Fereja, T.H., A. Hymete, and T. Gunasekaran, ISRN Spectroscopy, 2013. 2013: p. 230858.

    24. Noomnarm, U. and R.M. Clegg, Photosynth Res , 2009. 101: p. 181-194.

    25. Turro, N.J., Modern Molecular Photochemistry. 1991: Benjamin/Cummings Publishing Company.

    26. Lakowicz, J.R., Principles of fluorescence spectroscopy. 3rd ed.. ed, ed. SpringerLink. 2006, New York: New York : Springer.

    27. Dance, Z.E.X., et al., J. Phys. Chem. A, 2008. 112: p. 4194-4201.

    28. Maus, M., et al., J. Phys. Chem. A, 1999. 103: p.3388-3401.

    29. Grabowski, Z.R., K. Rotkiewicz, and W. Rettig, Chem. Rev., 2003. 103: p. 3899-4032.

    30. Nagakura, S., Molecular Physics, 1960. 3: p. 105-113.

    31. Davis, H.F., S.K. Chattopadhyay, and P.K. Das, J.Phys.Chem., 1984. 88: p. 2798-2803.

    32. Strieth-Kalthoff, F., et al., Chem.Soc.Rev., 2018. 47. 7190-7202.

    33. Tadross, P.M., et al., Org. Lett., 2010. 12: p. 1224-1227.

    34. Hogan, D.T. and T.C. J. Phys. Chem. Lett., 2018. 9: p. 2825-2829.

    35. Nobutaka, S., et al., Chem. Soc. Jpn, 1983. 56: p. 1519-1521.

    36. Peter H. Homann., Plant Physiol, 1969. 44: p. 932-93.

    下載圖示
    2025-08-20公開
    QR CODE