| 研究生: |
張易軒 Cheng, Yi-Syuan |
|---|---|
| 論文名稱: |
簡易之結構化H2及H∞控制器求解法與實用設計工具箱 A Simplified and Structured H2 and H∞ Controller Synthesis Method with a Practical Control Design Toolbox |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | H2及H∞強健控制 、線性分式變換 、鍊散射描述 、頻譜零點 |
| 外文關鍵詞: | H2 and H∞ Robust Control, Linear Fractional Transformation, Chain Scattering Description, Spectral Zeros |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在提升H2及H∞強健控制理論的可理解性與教學應用價值,針對現有文獻中常見的推導不易理解、邏輯關係不清與輔助工具導引不足等問題,進行整理與改進。本文提出三項主要目標:(一)釐清H2及H∞控制器設計的邏輯架構與設計條件;(二)建立線性分式轉換(Linear Fractional Transformation, LFT)與鍊散射描述(Chain Scattering Description, CSD)兩種設計方法間的步驟與數學對應關係;(三)開發具教學導向與視覺化輔助功能的圖形使用者介面(Graphical User Interface, GUI),協助使用者掌握設計流程與系統行為。在理論方面,本文重新解釋H2及H∞控制的設計邏輯,並比較LFT與CSD方法在架構與數學表達上的差異,彌補文獻中對兩法整合不足的缺口。同時分析CSD法中兩種典型結構的閉迴路行為,並以理論驗證其穩定性一致性。工具方面,本研究以MATLAB為基礎開發GUI,強化學習與實作的連結。本論文有助於降低H2及H∞強健控制的學習門檻,提升設計流程的透明度與可操作性,並提供一套具教學與實務應用的輔助平台,促進理論與應用的有效結合。
This thesis aims to improve the clarity and educational accessibility of H2 and H∞ robust control theory by addressing common challenges such as complex derivations, unclear design logic, and insufficient practical design guidance. The research pursues three main objectives: (1) clarifying the design rational and conditions of H2 and H∞ controllers; (2) establishing step-by-step and mathematical correspondences between Linear Fractional Transformation (LFT) and Chain Scattering Description (CSD) methods; and (3) developing an educational and visual MATLAB-based Graphical User Interface (GUI). On the theoretical side, the study reformulates robust control design procedures, compares LFT and CSD structures, and highlights their integration potential. It also analyzes the closed-loop relation of two CSD configurations, proving their theoretical equivalence and clarifying their roles in controller and observer design. On the practical side, the proposed GUI allows users to interactively explore system responses, fine-tune design parameters, and visualize the effects of spectral zeros and pole placement. By bridging theory and practice, this research lowers the learning barrier, enhances design transparency, and provides a useful platform for teaching and practical application of H2 and H∞ robust control.
[1] K. Glover and J. C. Doyle, "State-space formulae for all stabilizing controllers that satisfy an H∞-norm bound and relations to relations to risk sensitivity," Systems & control letters, vol. 11, no. 3, pp. 167-172, 1988.
[2] R. S. Smith and J. C. Doyle, "Model invalidation: A connection between robust control and identification," in 1989 American control conference, 1989: IEEE, pp. 1435-1440.
[3] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. Upper Saddle River, N.J: Prentice Hall, 1996.
[4] H. Kimura, "Conjugation, interpolation and model-matching in H∞," International Journal of Control, vol. 49, no. 1, pp. 269-307, 1989.
[5] M.-C. Tsai and C.-S. Tsai, "A chain scattering-matrix description approach to H/sup infinity/control," IEEE transactions on automatic control, vol. 38, no. 9, pp. 1416-1421, 1993.
[6] H. Kimura, "Chain-scattering representation, Jlossless factorization and H^∞ control," J. Math. Systems, Estimation & Control, vol. 5, no. 2, pp. 203-255, 1995.
[7] H. Kimura, Chain-Scattering Approach to H∞-control. Boston, MA, USA: Birkhäuser, 1997.
[8] Y.-Q. Z. Mi-Ching Tsai, Bo-Cheng Tsai, Chinweze U. Ubadigha, "Solution Analysis of H∞/H2 Control Formulations Based on Chain-Scattering Description Approach," presented at the 26th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Cambridge, UK, 2024.
[9] M.-C. Tsai and F.-Y. Yang, "Chain-scattering description approach to characterise stabilising controllers and optimal H 2 solution," IET control theory & applications, vol. 5, no. 8, pp. 1022-1032, 2011.
[10] M.-C. Tsai and D.-W. Gu, "Robust and optimal control," Advances in Industrial Control, vol. 33, no. 97, pp. 2095-2095, 2014.
[11] 瑞巴凡, "用於系統建模, 系統元件模組連接及其可視化的雙埠矩陣框架," M.S. thesis, Dept. Mecha. Eng., National Cheng Kung Univ., Tainan,Taiwan, 2022.
[12] A. Packard and J. Doyle, "The complex structured singular value," Automatica, vol. 29, no. 1, pp. 71-109, 1993.
[13] 楊復云, "鏈散射描述法求解控制器及雙自由度控制系統之強健設計," Ph.D. dissertation, Dept. Mecha. Eng., National Cheng Kung Univ., Tainan,Taiwan, 2012.
[14] R. Redheffer, "Inequalities for a matrix Riccati equation," Journal of Mathematics and Mechanics, pp. 349-367, 1959.
[15] H. Bart, I. Gohberg, M. A. Kaashoek, and A. C. Ran, A state space approach to canonical factorization with applications. Springer Science & Business Media, 2011.
[16] M. Vidyasagar, "Control system synthesis: a coprime factorization approach," MIT Press, vol. 9, p. 1, 1985.
[17] X. Ding and P. M. Frank, "Fault detection via factorization approach," Systems & control letters, vol. 14, no. 5, pp. 431-436, 1990.
[18] D. a. B. Youla, J. and Jabr, H., "Modern Wiener--Hopf design of optimal controllers Part I: The single-input-output case," IEEE Transactions on Automatic Control, vol. 21, no. 1, pp. 3-13, 1976.
[19] D. a. J. Youla, H. and Bongiorno, J., "Modern Wiener-Hopf design of optimal controllers--Part II: The multivariable case," IEEE Transactions on Automatic Control, vol. 21, no. 3, pp. 319-338, 1976.
[20] Y. Choi, W. K. Chung, I. H. Suh, and S. R. Oh, "Standard H∞ state-space solution by Youla parameterization," IFAC Proceedings Volumes, vol. 30, no. 6, pp. 691-696, 1997.
[21] K. Nonaka, "Youla-parametrization of output feedback sliding mode controller: Internal stability and disturbance rejection," in Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), 1999, vol. 1: IEEE, pp. 535-539.
[22] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper Saddle River, NJ, 1998.
[23] G. H. Golub and C. F. Van Loan, Matrix computations. Baltimore: Johns Hopkins University Press, 1983.
[24] 林俊良, 強健控制系統: 分析與設計. 國立編譯館, 1997.
[25] P. Bolzern, P. Colaneri, and G. De Nicolao, "Transient and asymptotic analysis of discrete-time H∞-filters," European Journal of Control, vol. 3, no. 4, pp. 317-324, 1997.
[26] M.-C. Tsai, "Robust Control New Book," 2025.
[27] H. Rosenbrock, "Transformation of linear constant system equations," in Proceedings of the Institution of Electrical Engineers, 1967, vol. 114, no. 4: IET, pp. 541-544.
[28] 周妍綺, "基於雙端網路架構之強健控制器設計工具包開發," M.S. thesis, Dept. Mecha. Eng., National Cheng Kung Univ., Tainan,Taiwan, 2024.
[29] 蔡博丞, "基於雙端網路架構之馬達強健觀測器設計工具包開發," M.S. thesis, Dept. Mecha. Eng., National Cheng Kung Univ., Tainan,Taiwan, 2024.
[30] B. A. Francis, A course in H∞ control theory. Springer, 1987.
[31] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, "State-space solutions to standard H2 and H∞ control problems," in 1988 American Control Conference, 1988: IEEE, pp. 1691-1696.
[32] 陳婕榆, "H₂/H∞觀測器設計實務與閉迴路特性解析," M.S. thesis, Dept. Mecha. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2025.
[33] 劉俊昱, "H₂/H∞迴授控制器設計實務與閉迴路特性解析," M.S. thesis, Dept. Mecha. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2025.
[34] H. Kwakernaak, "H2-optimization—Theory and applications to robust control design," Annual Reviews in Control, vol. 26, no. 1, pp. 45-56, 2002.
[35] 蔡清雄, "應用鏈式分散矩陣求解H∞控制問題," M.S. thesis, Dept. Electr. Eng., National Cheng Kung Univ., Tainan,Taiwan, 1992.