簡易檢索 / 詳目顯示

研究生: 陳皇翰
Chen, Huang-Han
論文名稱: 在修飾有功能性氟化合物的多電層聚雙甲基矽氧烷基材上製備抗體微陣列
Functional Fluorinated Modifications on a Polyelectrolyte Coated Polydimethylsiloxane Substrate for Fabricating Antibody Microarrays
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 85
中文關鍵詞: 軟性基材聚雙甲基矽氧烷微陣列氟化合物表面修飾乳癌細胞
外文關鍵詞: soft material, PDMS, microarray, fluorinated compounds, surface modification, breast cancer cells (MCF-7)
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氟化合物,因它具有疏水性,抗沾黏性和自我清潔的這些特性,所以它被用來當作鍍膜生物晶片的材料。在本次研究中,我們使用光聚合的方式將氟化物和丙烯酸共價鍵解到鍍有多電層修飾的聚雙甲基矽氧烷基材上,然後再鍵結上蛋白質-G,去形成一個可以捕捉抗體的功能性表面。此表面經實驗證實,它除了可保留未修飾聚雙甲基矽氧烷的疏水性特性之外,還可以用它來抗非專一性的蛋白質吸附和鍵解。因此當用此修飾的表面在進行分析時,可以點上水溶液的小水珠微量體積樣品而不會使樣品擴散開和乾掉。由接觸角儀器證實,此氟化合物修飾聚雙甲基矽氧烷基材後,其表面特性跟未修飾的聚雙甲基矽氧烷基材一樣具疏水性,並且可在超過7天保存以及4度乾燥的環境下一直保持它疏水的特性。光譜儀的數據展示了此修飾可聚合而形成均勻且高密度(6.6×1019 molecules/mm2)的多層氟化物(35.4%)鍍膜。此外,蛋白質-G被證實它共價鍵結到丙烯酸分子上,而它在聚雙甲基矽氧烷基材表面上的鍍膜密度為6.57×1012 molecules/mm2。我們證實用氟化物的鍍膜不但可以抵抗非專一性的表面吸附和鍵解之外,還可以在做分析實驗時不用加入阻擋試劑而展現高於用PEG鍍膜修飾的靈敏度6倍。接下來將此氟化合物聚雙甲基矽氧烷抗體微陣列晶片更進一步應用於準確地定量出MCF-7細胞內ERα蛋白質的絕對濃度。最後,這氟化合物的獨特性質,如抗非專一性物質吸附和鍵結、高疏水性和抗污染等…..使它們可以在靈敏和簡單的分析晶片上變成一個非常優越的鍍膜材料。

    Fluorinated compounds exhibit hydrophobic, nonstick, and self-cleaning properties, making them attractive for use as the coating material for biochips. In this study, we copolymerized the fluorinated compound 1H,1H,2H-Perfluoro-1-decene (FD) with acrylic acid (AA) and bonded the resulting copolymer with protein G on the surface of polyelectrolyte coated polydimethylsiloxane (PDMS) to form a functional surface that captures antibodies. We demonstrated that the modified PDMS surface remained hydrophobic while becoming resistant to nonspecific protein binding. Thus, aqueous sample solutions formed the droplets (4uL) on the surface without spreading and drying during the sample printing. Contact angle measurements showed that this functionalized surface was as hydrophobic as the native PDMS with a virtually constant contact angle over seven days of the study under dried condition at 4degree. Spectroscopic measurements revealed that FD/AA copolymerization formed a homogeneous and highly dense multilayer (6.6×1019 molecules/mm2) with a fluorine coverage of 35.4%. Moreover, protein G was shown to covalently bind to AA molecules on the surface at a binding density of 6.57×1012 molecules/mm2. We demonstrated that the fluorinated coating withstood nonspecific binding with extremely low background emission, leading to bioassays that, without the need of blocking agents, exhibited six times more sensitivity than Poly(Ethylene Glycol) (PEG) coatings. The fluorinated PDMS antibody microarrays were further applied to accurately determine the absolute concentration of Estrogen Receptor alpha (ERα) in MCF-7 cell lysate (breast cancer). In conclusion, the unique properties of fluorinated compounds, such as withstanding wetting, nonspecific binding and contamination, make them an excellent coating material for use in sensitive and simple on-chip assays.

    Content Abstract-------------------------------------------------------------------------------I Chinese Abstract--------------------------------------------------------------------Ⅲ Content-------------------------------------------------------------------------------IV List of Tables------------------------------------------------------------------------VI List of Figures----------------------------------------------------------------------VII Abbreviations-------------------------------------------------------------------------X 致謝---------------------------------------------------------------------------------XⅢ 自述和自傳-----------------------------------------------------------------------X IV Chapter One: Research Content 1.1 Research motivation-------------------------------------------------------------1 1.2 Research strategy ----------------------------------------------------------------2 Chapter Two: Literature Survey 2.1 Biochip----------------------------------------------------------------------------5 2.2 Protein microarray---------------------------------------------------------------6 2.3 Protein microarray fabrications------------------------------------------------9 2.4 Polydimethylsiloxane (PDMS) -----------------------------------------------12 2.5 PDMS surface modification---------------------------------------------------13 2.6 Fluorinated compounds--------------------------------------------------------14 2.7 Enzyme-linked immunosorbent assays (ELISA) --------------------------16 Chapter Three: Experimental Sections 3.1 Materials and chemicals-------------------------------------------------------36 3.2 Fabrication of the fluorinated PDMS microarray--------------------------38 3.3 Surface characterization-------------------------------------------------------39 3.4 Protein microarray chip assay ------------------------------------------------41 3.5 Cell culture ----------------------------------------------------------------------42 Chapter Four: Results and Discussions 4.1 Optimization for surface modifications--------------------------------------51 4.2 Surface characterization-------------------------------------------------------53 4.3 Nonspecific binding------------------------------------------------------------57 4.4 Binding efficiency tests by ELISA-------------------------------------------58 Chapter Five: Conclusion and Perspectives 5.1 Conclusion-----------------------------------------------------------------------79 5.2 Perspectives---------------------------------------------------------------------79 References----------------------------------------------------------------------------80

    References
    [1] Zhu, H.; Snyder, M. Curr. Opin. Chem. Biol. 2003, 7, 55-63.
    [2] Joos, T. O.; Schrenk, M.; Hopfl, P.; Kroger, K.; Chowdhury, U.; Stoll, D.; Schorner D.; Durr, M.; Herick, K.; Rupp, S.; Sohn, K.; Hammerle, H. Electrophoresis 2000, 21, 2641-2650.
    [3] Haab, B.; Dunham, M.; Brown, P. Genome Biol. 2001, 2, research0004.1-0004.13.
    [4] Kusnezow, W.; Jacob, A.; Walijew, A.; Diehl, F.; Hoheisel, J. D. Proteomics 2003, 3, 254–264.
    [5] Fall, B. I.; Eberlein-Konig, B.; Behrendt, H.; Niessner, R.; Ring, J.; Weller, M. G. Anal. Chem. 2003, 75, 556–562.
    [6] Peluso, P.; Wilson, D. S.; Do, D.; Tran, H.; Venkatasubbaiah, M.; Quincy,D.; Heidecker, B.; Poindexter, K.; Tolani, N.; Phelan, M.; Witte, K.; Jung, L.S.; Wagner, P.; Nock, S. Anal. Biochem. 2003, 312, 113–124.
    [7] Ge H: UPA Nucleic Acids Res 2000, 28:e3.
    [8] Lottersy, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P. J. Micromech. Microeng. 1997, 7, 145-147.
    [9] Linder, V.; Verpoorte, E.; Thormann, W.; de Rooij, N. F. Sigrist, H. Anal. Chem. 2001, 73 ,4181–4189.
    [10] Makamba, H.; Hsieh, Y. Y.; Sung, W. C.; Chen, S. H. Anal. Chem. 2005, 77, 3971-3978.
    [11] Sung, W. C.; Chang, C. C.; Makamba, H.; Chen, S. H. Anal. Chem., 2008, 80, 1529-1535.
    [12] Jones,V.W.; Kenseth J.R.; Porter M.D.; Mosher C.L.; Henderson E. Anal. Chem. 1998, 70, 1233–1241.
    [13] Bussow, K.; Cahill, D.; Nietfeld, W.; Bancroft, D.; Scherzinger, E.; Lehrach, H.; Walter, G. Nucleic Acids Res. 1998, 26, 5007–5008.
    [14] Lizardi, M.; Huang, X.; Zhu, Z.; Bray-Ward, P.; Thomas, D.C.; Ward, D.C. Nat. Genet. 1998, 19, 225–232.
    [15] Avseenko, N.V.; Morozova, T.Y.; Ataullakhanov F.I.; Morozov, V. N. Anal. Chem. 2002, 74, 927-933.
    [16] Zhu, H.; Klemic, J.F.; Chang, S.; Bertone, P.; Casamayor, A.; Klemic, K.G..; Smith, D.; Gerstein, M.; Reed, M.A.; Snyder, M. Nat. Genet. 2000, 26, 283–289.
    [17] Salamon, Z.; Brown,M.F.; Tollin, G.. Trends Biochem. Sci. 1999, 24, 213–219.
    [18] Taton, T.A.; Mirkin, C.A.; Letsinger, R.L. Science 2000, 289, 1757–1760.
    [19] Dow Corning Corp. Implant Information Booklet; 1998.
    [20] Lahey, F. H. Ann. Surg. 1946, 124, 1027-1028.
    [21] Nicola, De R. R. J. Urol. 1950, 63 (1), 168-172.
    [22] Qin, D.; Xia, Y.; Whitesides, G. M. Adv. Mater. 1996, 8, 917-919.
    [23] Duffy, D. C.; McDonald, J. C.; Schuller, O. J.; Whitesides, G. M. Anal. Chem.
    1998, 70, 4974-4984.
    [24] Lee, J. N.; Park, C M.; Whitesides G. M. Anal. Chem. 2003, 75, 6544–6554.
    [25] Kim, J.; Chaudhury, M. K.; Owen, M. J.; Orbeck, T. J. Colloid Interface Sci.
    2001, 244, 200-207.
    [26] Kim, J.; Chaudhury, M. K.; Owen, M. J. J. Colloid Interface Sci. 2000, 226,
    231-236
    [27] Lahann, J.; Balcelis, M.; Hang, L.; Rodon, T.; Jensen, K. F.; Langer, T. Anal. Chem. 2003, 75, 2117-2122.
    [28] Christine, M. Andres.; Nicholas, A. Kotov. J. Am. Chem. Soc. 2010, 132, 14496-14502.
    [29] Liu, Y.; Fanguy, J. C.; Bledsoe, J. M.; Henry, C. S. Anal. Chem. 2000, 72, 5939-
    5944.
    [30] Fritz, J. L.; Owen, M. J. J. Adhesion. 1995, 54, 33-45.
    [31] Lai, J. Y.; Lin, Y. Y.; Denq, Y. L.; Shyu, S. S.; Chen, J. K. J. Adhes. Sci. Technol.1996, 10, 231-242.
    [32] Hillborg, H.; Gedde, U. W. Polym. Sci. 1998, 39, 1991-1998.
    [33] Efimenko, K.; Wallace, W. E.; Genzer, J. J. Colloid Interface Sci. 2002, 254,
    306-315.
    [34] Xiao, D. Q.; Van Le, T.; Wirth, M. J. Anal. Chem. 2004, 76, 2055-2061.
    [35] Sung, W. C.; Huang, S. Y.; Liao, P. C.; Lee, G. B.; Li, C. W.; Chen, S. H.
    Electrophoresis. 2003, 24, 3648-3654.
    [36] Slentz, B. E.; Penner, N. A.; Regnier, F. E. J. Chromatogr. A. 2002, 948, 225-233.
    [37] Papra, A.; Bernard, A.; Juncker, D.; Larsen, N. B.; Michel, B.; Delamarche E. Langmuir. 2001, 17, 4090-4095.
    [38] Roman, G. T.; Hlaus, T.; Bass, K. J.; Seelhammer, T. G.; Culbertson, C. T. Anal. Chem. 2005, 77, 1414-1422.
    [39] Vickers, J. A.; Caulum, M. M.; Henry, C. S. Anal. Chem. 2006, 78, 7446-7452.
    [40] Hu, S.; Ren, X.; Backman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. Anal. Chem. 2004, 74, 1865-1870.
    [41] Hu, S.; Ren, X.; Backman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. Anal. Chem. 2002, 74, 4117-4123.
    [42] Yang, T.; Jung, S.; Hang, L.; Mao, H.; Cremer, P. S. Anal. Chem. 2001, 73, 165- 169.
    [43] Phillips, K. S.; Cheng, Q. Anal. Chem. 2005, 77, 327-334.
    [44] Yang, T.; Baryshnikova, O. K.; Mao, H.; Holden, M. A.; Cremer, P. S. J. Am. Chem. Soc. 2003, 125, 4779-4784.
    [45] Mao, H.; Yang, T.; Cremer, P. S. Anal. Chem. 2002, 74, 379-385.
    [46] Yang, T.; Jung, S.; Hang, L.; Mao, H.; Cremer, P. S. Anal. Chem. 2001, 73, 165-
    169.
    [47] Qin, M.; Wang, L. K.; Feng, X. Z.; Yang, Y. L.; Wang, R.; Wang, C.; Yu, L.; Shao, B.; Qiao, M. Q. Langmuir. 2007, 23, 4465-4471.
    [48] Klenkler, B.J.; Griffith, M.; Becerril, C.; West-Mays J.A.; Sheardown H. Biomaterials. 2005, 26, 7286-7296.
    [49] Sung, W. C.; Chen, H. H.; Makamba, H.; Chen, S. H. Anal Chem. 2009, 81, 7967
    -7973.
    [50] David O’Hagan.Chem. Soc. Rev. 2008, 2, 308–319.
    [51] DeRose, J.A.; Hoque, E.; Bhushan, B.; Mathieu, H.J. Surface Science. 2008, 602, 1360-1367.
    [52] Arun Kumar Gnanappa.; Cian O’Murchu.; Orla Slattery.; Frank Peters.; Tony O’Hara.; Balázs Aszalós-Kiss.; Syed A.M. Tofail. Applied Surface Science. 2011, 25, 4331-4338.
    [53] M. Beck.; M. Graczyk.; I. Maximov.; E.-L. Sarwe.; T. G. I. Ling.; M. Keil.; L. Montelius. Microelectron. Eng. 2002, 61, 441–448.
    [54] Li, Y.T.; Chen H.H.; Boppudi Hari Babu.; Hsieh Y.Y.; Chen S.H. Applied Surface Science. 2010, 256, 6908-6913.
    [55] Hsieh, H. Y.; Wang, P. C.; Wu, C. L.; Huang, C. W.; Chieng, C. C.; Tseng, F. G.. Anal. Chem. 2009, 81, 7908–7916.
    [56] Engvall, E.; Perlmann, P. Immunochemistry. 1971, 8, 871–874.
    [57] Crowther, J. R. The ELISA Guidebook Methods in Molecular Biology (electron- ic book). 2000.
    [58] Aburatani, T.; Sakamoto, K.; Masuda, K.; Nishi, K.; Ohkawa, H.; Nagamune, T.; Ueda, H. Anal. Chem. 2003, 75, 4057-4064.
    [59] Trau, D.; Yang, W.; Seydack, M.; Caruso, F.; Yu, N. T.; Renneberg, R. Anal. Chem. 2002, 74, 5480-5486.
    [60] Kiening, M.; Niessner, R.; Drs, E.; Baumgartner, S.; Krska, R.; Bremer, M.; Tomkies, V.; Reece, P.; Danks, C.; Immer, U.; Weller, M. G. J. Agric. Food Chem. 2005, 53, 3321-3327.
    [61] Luxton, R.; Badesha, J.; Kiely, J.; Hawkins, P. Anal. Chem. 2004, 76, 1715-1719.
    [62] Van Coillie, E.; De Block, J.; Reybroeck, W. J. Agric. Food Chem. 2004, 52, 4975-4978.
    [63] Coons, A. H.; Creech, H. J.; Jones, R. N.; Berliner, E. Journal of Immunology. 1942, 45, 159-170.
    [64] Weller, T. H.; Coons, A.H. Proc. Soc. Exp. Biol. 1954, 4, 789-794.
    [65] Palomaki, P. J. Immunol. Method. 1991, 145, 55-63.
    [66] Rao, P.N.; Taraporewala, I.B. Steroids. 1992, 57, 154-161.
    [67] Perry M. K.; Harry W. Seminars in Immunology. 1994, 6, 347-360.
    [68] Li, Z.; Yang, X.; Wu, L.; Chen, Z.; Lin, Y.; Xu, K.; Chen, G. Q. J Biomater Sci Polym Ed.2009, 20, 1179-1202.
    [69] Cerruti, M.; Fissolo, S.; Carraro, C.; Ricciardi, C.; Majumdar, A.; Maboudian, R. Langmuir. 2008, 24, 10646-10653.
    [70] Han, D. K.; Park, K. D.; Hubbell, J. A.; Kim, Y. H. J Biomater Sci Polym Ed. 1998, 9, 667-680.
    [71] Gennes, De P. G. Ann.Chim. 1987, 77, 389-410.
    [72] Taunton, H. J.;Toprakcioglu, C.; Fetters, L. J.; Klein, J. Nature. 1988, 332, 712-714.
    [73] Jeon, S. I.; Lee, J. H.; Andrade, J. D.; de Gennes, P. G. J. Collo Interface Sci. 1991, 142, 149-158.
    [74] Jeon, S. I.; Andrade, J. D. Ibid. 1991, 142, 159-166.
    [75] Stroock, A. D.; Kane, R. S.; Weck, M.; Metallo, S. J.; Whitesides, G. M. Langmuir. 2003, 19, 2466-2472.
    [76] Yongfeng, S.; Xiao, H.; James, D.; Mitchell A. L.; Myles B. Cell. 2000, 103, 843
    -852.
    [77] Vijay, K.; Stephen, G.; Gary, S.; Meera, B.; Jin, J. R.; Pierre, C. Cell. 1987, 51, 941-951.
    [78] Geoffrey, L. G.; Paul, G.; Michael, W.; Andrew, B.; Yvonne, H.; John, S. Science. 1986, 31, 1150-1154.
    [79] Active Motif company. Catalog Nos.49296&49796.www.activemotif.com
    [80] David, J. B.; Gary, K. S.; Birgit, S.; Christian, A.; Jason, M. H.; Bradford, W. G.; Christopher, C.B.; Michael, A. Baldwin. J. Am. Soc. Mass Spectrom. 2008, 19, 729-740.
    [81] Image J software version. http://rsb.info.nih.gov/ij/download.html
    [82] Lee, A.; Mirica, K. A.;Whitesides, G. M. J. Phys. Chem. B. 2011,115, 1199-1210

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE