| 研究生: |
陳震宇 Chen, Chen-Yu |
|---|---|
| 論文名稱: |
呼吸式微型質子交換膜燃料電池堆設計研究 Studies on The Design of Air-Breathing Miniature PEMFC Stack |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 微型燃料電池 、性能測試 、電池堆設計 、快速成型 、質子交換膜燃料電池 |
| 外文關鍵詞: | Rapid prototyping, Stack design, Performance test, Miniature fuel cell, PEMFC |
| 相關次數: | 點閱:120 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子交換膜燃料電池屬於新興潔淨能源領域,一般公認其適用於中高功率之交通工具與分散式電源系統,但對於無人飛行載具、機械人或其他小型電子零組件等高電壓低功率需求之應用,微型氫氣燃料電池的發展將較其他種類之燃料電池更具有競爭優勢。因此,本研究之目的乃是設計一呼吸式微型燃料電池堆原型,並進行基本性能測試。
本研究成功開發出一體積約為6cm×6cm×3cm呼吸式微型燃料電池堆原型,並首次將快速成型技術運用於燃料電池本體之製作。電池堆之膜電極組採分段式設計,分為10個單級電池,每個單級電池反應面積為1.3cm×1.3cm。經過測試,在陽極提供90℃相對溼度氫氣、電池置於室溫環境及陰極提供強制對流之操作條件下,電池並聯可於電壓0.425V時,達到188mW/cm2 之功率密度,性能約為同條件下傳統石墨單電池的75%;10級電池串聯可於電壓4.25V時,達到123mW/cm2 之功率密度,性能約為同條件下傳統石墨單電池的50%。
藉由本研究之探討,吾人發現相較於自由對流,強制對流能大幅度地提升呼吸式燃料電池性能,最大可提升約50%左右。同時針對吾人所設計之平板式呼吸式燃料電池在自由對流與強制對流兩種空氣輸送方式上所表現出之性能特性,吾人提出存在著水平衡臨界點之看法。另外,在電池堆串聯方面,整體性能易受單級電池之影響。最後本研究亦提出可利用傳統石墨燃料電池作為呼吸式燃料電池性能比較之依據以及作為未來吾人設計之電池堆之最佳值與性能提升目標。
Proton exchange membrane fuel cells (PEMFC) are one of the most interesting alternatives for clean power production in automotive applications and for distributed power generation. PEMFC might also be a viable alternative in many special applications where a highly reliable source of electricity is needed and a miniature PEMFC will be a good electricity source of MAVs, robots or other small applications.
In this study, an air-breathing miniature PEMFC stack with a dimension of 6 cm length, 6 cm width and 3 cm thickness has been designed. A mono-polar assembly method is applied to connect 10 single cells with a 1.7 cm2 electrode area in each single cell and the stack is composed of several layers including a proton exchange membrane with 10 segmented electrode coated area, sealing layers, collector plates, a ventilation plate, a fuel flow field plate, a fuel distributor and end-plates. To provide the flexibility of electrics connection of 10 single cells, the flow field plate is fabricated with acrylonitrile-butadiene-styrene (ABS) material to ensure electricity isolation between each single cell.
In this study, the rapid prototyping (RP) technology have been firstly applied to manufacture the flow field plates of the fuel cell stack. Rapid prototyping utilize CAD data which is transformed from a design concept to CAD data by computer integrated manufacturing (CIM) technology to forming the 3D model to accelerate the new product development. This technology reduces producing and processing difficulties, and allows manufacturing to proceed as long as 3D CAD design file has been completed. RP method fast connects product design and manufacturing, without conventional NC code editing and considerations in finding available fixtures.
An MEAs polarization curve test under the conditions of 70℃ cell temperature, 70℃RH humidified H2 and O2 and closed flow channel has been completed and a current density 960 mA/cm2 at rated voltage output of 0.6V has been obtained. The polarization curve test under the conditions of room temperature environment, forced convection of air, . 90℃ R.H. humidified H2, has been completed. A power density of 188mW/cm2 at 0.425V in the parallel-connection tests and a power density of 123mW/cm2 at 4.25V has been obtained in the serial-connection tests.
1. Manhattan Scientifics Inc., “Powering Portables and Palmtops,” New
Orleans, (2000).
2. Rongzhong Jiang, Deryn Chu, “Stack design and performance of polymer
electrolyte membrane fuel cells,” Journal of Power Sources 93 (2001),
pp.25-31.
3. Matti Noponen, Tuomas Mennola, Mikko Mikkola, Tero Hottinen, Peter Lund,
“Measurement of current distribution in a free-breathing PEMFC, ” Journal
of Power Sources 106 (2002), pp.304-312.
4. A. Schmitza, M. Tranitza, S.Wagnerb, R. Hahnb, C. Heblinga, “ Planar self-
breathing fuel cells,” Journal of Power Sources 118 (2003) pp.162-171.
5. A. Schmitz, S. Wagner, R. Hahn, H. Uzun, C. Hebling, “Stability of planar
PEMFC in Printed Circuit Board technology,” Journal of Power Sources 127
(2004), pp.197-205.
6. S.J. Lee, A. Chang-Chien, S.W. Cha, R. O’Hayre,Y.I. Park, Y. Saito, F.B.
Prinz,“ Design and fabrication of a micro fuel cell array with flip-flop
interconnection,” Journal of Power Sources 112 (2002), pp.410-418.
7. R. Dillon, S. Srinivasan, A.S. Aricò , V. Antonucci, “ International
activities in DMFC R&D: status of technologies and potential
applications ,” Journal of Power Sources 127 (2004), pp.112–126.
8. R.Hahn, S. Wagner, A.Schmitz, H.Reichl, “Development of a planar micro
fuel cell with thin and micro patterning technologies,” Journal of Power
Sources 131 (2004), pp.73-78.
9. Jeremy P. Meyers, Helen L. Maynard, “Design considerations for
miniaturized PEM fuel cells, ” Journal of Power Sources 109 (2002), pp. 76-
88.
10. Keyur Shah, W.C. Shin, R.S. Besser, “A PDMS micro proton exchange
membrane fuel cell by conventional and non-conventional microfabrication
techniques, ” Sensors and Actuators B 97 (2004) pp. 157–167.
11. 黃鎮江, “燃料電池,” 全華科技圖書股份有限公司(2003)
12. EG&G Services Parsons, Inc. “Fuel Cell Handbook (Sixth edition),”
November (2002).
13. Atul Kumar, Ramana G. Reddy, “Effect of channel dimensions and shape in
the flow-field distributor on the performance of polymer electrolyte
membrane fuel cells, ” Journal of Power Sources 113 (2003), pp.11-18.
14. K. Tüber, A. Oedegaard , M. Hermann, C. Hebling, “Investigation of
fractal flow-fields in portable proton exchange membrane and direct
methanol fuel cells”, Journal of Power Sources 131 (2004), pp.175–181.
15. J.G. Conley, H.L. Marcus, November, “Rapid Prototyping and Solid Free
Form Fabrication,” Journal of Manufacturing Science and Engineering, 119
(1997), pp.811-816.
16. Chua Chee Kai, Leong Kah Fai, “Rapid Prototyping – Principles and
Applications in Manufacturing,” (1997), John Wiley & Sons(Asia), Pte Ltd.
17. Tuomas Mennola, Mikko Mikkola, Matti Noponen, Tero Hottinen, Peter lund,
“Measurement of ohmic voltage losses in individual cells of a PEMFC
stack,” Journal of Power Sources 112 (2002), pp.261-272.
18. Ronald K.A.M. Mallant, “PEMFC systems: the need for high temperature
polymers as a consequence of PEMFC water and heat management,” Journal of
Power Sources 118 (2003), pp.424–429.
19. K.T. Adjemian, S. Srinivasan, J. Benziger, A.B. Bocarsly, “Investigation
of PEMFC operation above 100℃ employing perfluorosulfonic acid silicon
oxide composite membranes,” Journal of Power Sources 109 (2002), pp. 356–
364.
20. Nedjib Djilali, Dongming Lu, “Influence of heat transfer on gas and water
transport in fuel cells,” Int. J. Therm. Sci. 41 (2002), pp.29–40.