簡易檢索 / 詳目顯示

研究生: 龔柏丞
Kung, Bo-Chen
論文名稱: 無先導式卡爾曼濾波器的數值實驗報告
A Report for Numerical Experiments of Unscented Kalman Filter
指導教授: 王辰樹
Wang, Chern-Shuh
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 59
中文關鍵詞: 非線性卡爾曼濾波無先導式卡爾曼濾波驅動響應同步
外文關鍵詞: non-linear Kalman filter, unscented Kalman filter, drive-response synchronization
相關次數: 點閱:116下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇碩士論文中,我們首先介紹線性的卡爾曼濾波,這也是卡爾曼最先推導出來的形式,接著我們介紹非線性的卡爾曼濾波:擴張卡爾曼濾波、無先導式卡爾曼濾波。無先導式卡爾曼濾波是這篇論文注重的部分,論文中將無先導式卡爾曼濾波與擴張卡爾曼濾波做詳細的比較,在論文的後半我們簡單介紹混沌同步的概念,利用混沌同步的概念我們發展了一種新型態的卡爾曼濾波:兩階段卡爾曼濾波。最後一章我們簡介 MATLAB Simulink ,將擴張卡爾曼濾波在 Simulink 上實現。

    In this thesis, we firstly give a brief introduction to the linear Kalman filter, which is the beginning approach of Kalman filter. Next we introduce two Kalman filters for the nonlinear case: extended Kalman filter and unscented Kalman filter. Unscented Kalman filter is emphasized in this thesis. We compare extended Kalman filter and unscented Kalman filter in details. In Chapter 4, we illustrate the concept of synchronization of dynamical system, and use the synchronization technique to develop a new Kalman filter algorithm, named two stage Kalman filter. In the end of the thesis, we demonstrate numerical implement of the extended Kalman filter on MatLab SimuLink.

    1. 簡介 ...1 1.1 遞歸最小平方自適應濾波器 ...3 1.2 連續系統的離散化 ...5 2. 線性卡爾曼濾波 ...8 2.1 數學描述 ...8 2.2 數值模擬 ...12 3. 非線性卡爾曼濾波 ...14 3.1 擴張卡爾曼濾波 ...14 3.1.1 數值模擬 ...18 3.2 無先導式卡爾曼濾波 ...24 3.2.1 無先導變換 ...25 3.2.2 數值模擬 ...29 4. 兩階段卡爾曼濾波 ...32 4.1 混沌同步 ...32 4.2 驅動-響應同步 ...33 4.3 兩階段卡爾曼濾波 ...33 5. 卡爾曼濾波在 Simulink 上的數值實現 ...37 5.1 Simulink 簡介 ...37 5.2 擴張卡爾曼濾波在 Simulink 上的數值實現 ...45 參考文獻 ...49

    [1] 王世元與黃錦旺與謝智剛. 非線性卡爾曼濾波器原理及應用. 電子工業出版社, 2015.
    [2] 黃小平與王岩. 卡爾曼濾波原理及應用. 電子工業出版社, 2015.
    [3] 劉豹. 現代控制理論. 科技圖書股份有限公司, 1992.
    [4] Khil Kim.Kalman Filter for Beginners with MATLAB Examples. CreateSpace Independent Publishing Platform, 2011.
    [5] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares and C.S. Zhou, The synchronization of chaotic systems Physics Reports, 2002, Vol 366, pp. 1-101.
    [6] Julier S J, Uhlmann J K and Durrant-Whyte H. A new approach for filtering nonlinear systems. Processings of the American control conference, 1995,
    Vol 3068.
    [7] Julier S J and Uhlmann J K. Unscented Filtering and Nonlinear Estimation. IEEE, 2004, Vol 92.
    [8] J. K. Tugnait. Detection and estimation for abruptly changing systems. Automatica, 1982, Vol 18, pp. 607-615.
    [9] K. Kastella, M. A. Kouritzin, and A. Zatezalo. A nonlinear filter for altitude tracking. Air Traffic Control Assoc, 1996, pp. 1-5.
    [10] Wan, E. A. and van der Merwe.The Unscented Kalman Filter, in Kalman
    Filtering and Neural Networks.(ed S. Haykin),John Wiley & Sons Inc., New York, USA. , 2001.
    [11] A. W. Babister. Aircraft Dynamic Stability and Response. Pergamon Press, 1986.
    [12] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks Cole Publishing Co, 9th edition, 2011.
    [13] Uhlmann J K. Simultaneous map building and localization for real time applications. transfer thesis, Univ. Oxford. 1994.
    [14] Po-Jen Kung. A linearized regularization for nonlinear Kalman filtering. PhD thesis, preparing.
    [15] Wikipedia: Kalman filter,
    https://en.wikipedia.org/wiki/Kalman_filter
    [16] CH robotics : Understanding Euler Angles,
    http://www.chrobotics.com/library/understandingeulerangles

    下載圖示 校內:2017-10-28公開
    校外:2017-10-28公開
    QR CODE