| 研究生: |
蔡維展 Tsai, Wei-Zhan |
|---|---|
| 論文名稱: |
數值模式 ROMS 應用於高屏海底峽谷異重流及其對海底電纜斷裂的影響 A numerical investigation of the transport process of hyperpycnal river flow in Gaoping Submarine Canyon and its implications for subsea cable breaks |
| 指導教授: |
陳佳琳
Chen, Jia-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | ROMS 、低濃度異重流 、海底峽谷 、泥沙傳輸 、海底電纜 |
| 外文關鍵詞: | ROMS, hyperpycnal flow, submarine canyon, sediment transport, submarine cable breaks |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海底電纜作為台灣重要對外聯絡的資訊傳輸管道之一,其安全性非常重要。前人研究指出,從2006至2015年期間有2次因颱風過境後所造成的海底電纜斷裂。本研究利用數值模式ROMS,首先基於實驗室的異重流模擬結果進行數值模擬試驗,再分別以不同的紊流閉合模式和底床粗糙度,針對實驗的流速與密度進行模式率定。在率定和異重流模擬相關的紊流模式後,本研究基於高屏溪河川流量歷線、入流泥沙濃度、潮汐及垂向溫鹽分布進行模式設置與結果分析,研究中說明海底峽谷異重流的形成和運輸過程。模擬結果進一步顯示高屏峽谷異重流發生所需的入流濃度遠低於傳統臨界值(40 ~ 45 g/L,低濃度異重流)。當未達入流濃度20 g/L時,泥沙易受到潮汐影響擺動,反之則受河川入流流速影響順下峽谷流。河川入流的流量越大,異重流的流速越快,所產生的分布載重也越大。入流泥沙濃度大於20 g/L時,河川入流濃度越大,異重流的流速越快,產生的分布載重也越大,但入流泥沙濃度對分布載重的影響力不如入流流量。研究中亦針對不同河源泥沙進行情境模擬,結果顯示入流泥沙粒徑越大,沉降速度也越大,導致異重流流速增快,所形成的分布載重也越大,模式結果顯示流速為泥沙沉降速度的1/3次方,符合飽和濃度理論。基於數值模擬結果,本研究建議考慮環境因素和河川入流條件進一步優化電纜的設計規範。
From 2006 to 2015, two instances of submarine cable breaks were caused by the formation of hyperpycnal flow resulting from typhoon passages in southern Taiwan. Therefore, this study utilized the numerical model ROMS for experimental simulations. After model calibration, this research established the model settings. It analyzed the results based on the flow discharge of the Gaoping River, inflow sediment concentration, tides, and vertical temperature-salinity distribution. The study explains the formation and transport process of hyperpycnal flow. The simulation results demonstrate that the required inflow concentration for hyperpycnal flow is much lower than the traditional critical value (40 ~ 45 g/L). Numerical experiments indicate that hyperpycnal flows cannot form when the inflow sediment concentration is below 20g/L. When the inflow sediment concentration is above 20 g/L, a higher river inflow concentration leads to a faster hyperpycnal flow and more significant sediment transport. The study also conducted scenario simulations for different sediment sources, showing that larger sediment grain sizes result in faster settling velocities, leading to faster hyperpycnal flow and more significant sediment transport. Based on the numerical simulation results, the study recommends considering environmental factors and river inflow conditions to optimize cable design specifications further.
Bates, C. C. (1953). Rational theory of delta formation. Aapg Bulletin, 37(9), 2119-2162.
Bhaganagar, K., & Pillalamarri, N. R. (2017). Lock-exchange release density currents over three-dimensional regular roughness elements. Journal of fluid mechanics, 832, 793-824.
Carter, L. (2010). Submarine cables and the oceans: connecting the world. UNEP/Earthprint.
Carter, L., Gavey, R., Talling, P. J., & Liu, J. T. (2014). Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography, 27(2), 58-67.
Chapman, D. C. (1985). Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. Journal of Physical oceanography, 15(8), 1060-1075.
Chen, S. N., Geyer, W. R., & Hsu, T. J. (2013). A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves. Journal of Geophysical Research: Oceans, 118(5), 2702-2718.
Chiou, M. D., Jan, S., Wang, J., Lien, R. C., & Chien, H. (2011). Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan. Journal of Geophysical Research: Oceans, 116(C12).
Choi, S.-U., & García, M. H. (2002). k-ε turbulence modeling of density currents developing two dimensionally on a slope. Journal of Hydraulic Engineering, 128(1), 55-63.
Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183-204.
Flather, R. (1976). A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 10, 141-164.
Gavey, R., Carter, L., Liu, J. T., Talling, P. J., Hsu, R., Pope, E., & Evans, G. (2017). Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan. Marine Geology, 384, 147-158.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., & Lanerolle, L. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of computational physics, 227(7), 3595-3624.
Hsu, S.-K., Kuo, J., Chung-Liang, L., Ching-Hui, T., Doo, W.-B., Ku, C.-Y., & Sibuet, J.-C. (2008). Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 7.
Jan, S., Lien, R.-C., & Ting, C.-H. (2008). Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography, 64(5), 789-802. https://doi.org/10.1007/s10872-008-0066-5
Jiahua, F. (1986). Turbid density currents in reservoirs. Water International, 11(3), 107-116.
Jiang, Y., & Liu, X. (2018). Experimental and numerical investigation of density current over macro-roughness. Environmental Fluid Mechanics, 18, 97-116.
Kantha, L. H., & Clayson, C. A. (1994). An improved mixed layer model for geophysical applications. Journal of Geophysical Research: Oceans, 99(C12), 25235-25266.
Lee, I. H., Lien, R.-C., Liu, J. T., & Chuang, W.-s. (2009a). Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. Journal of Marine Systems, 76(4), 383-396. https://doi.org/https://doi.org/10.1016/j.jmarsys.2007.08.005
Lee, I. H., Wang, Y.-H., Liu, J. T., Chuang, W.-S., & Xu, J. (2009b). Internal tidal currents in the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems, 76(4), 397-404. https://doi.org/https://doi.org/10.1016/j.jmarsys.2007.12.011
Liu, J. T., Liu, K.-j., & Huang, J. C. (2002). The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 181(4), 357-386.
Liu, J. T., Wang, Y. H., Yang, R. J., Hsu, R. T., Kao, S. J., Lin, H. L., & Kuo, F. H. (2012). Cyclone‐induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research: Oceans, 117(C4).
Liu, J. T., Hsu, R. T., Hung, J.-J., Chang, Y.-P., Wang, Y.-H., Rendle-Bühring, R. H., Lee, C.-L., Huh, C.-A., & Yang, R. J. (2016). From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth-Science Reviews, 153, 274-300.
Mellor, G. L., & Yamada, T. (1974). A hierarchy of turbulence closure models for planetary boundary layers. Journal of the atmospheric sciences, 31(7), 1791-1806.
Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. IAHSR 2nd meeting, Stockholm, appendix 2,
Middleton, G. V. (1993). Sediment Deposition from Turbidity Currents. Annual Review of Earth and Planetary Sciences, 21(1), 89-114. https://doi.org/10.1146/annurev.ea.21.050193.000513
Miller, M., McCave, I., & Komar, P. D. (1977). Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527.
Mulder, T., & Syvitski, J. P. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3), 285-299.
Porcile, G., Enrile, F., Besio, G., & Pittaluga, M. B. (2022). Hydrostatic vs. non-hydrostatic modelling of density currents developing two dimensionally on steep and mild slopes. Applied Ocean Research, 121, 103085.
Raymond, W. H., & Kuo, H. (1984). A radiation boundary condition for multi‐dimensional flows. Quarterly Journal of the Royal Meteorological Society, 110(464), 535-551.
Reda, A., Howard, I. M., Forbes, G. L., Sultan, I. A., & McKee, K. K. (2017). Design and installation of subsea cable, pipeline and umbilical crossing interfaces. Engineering Failure Analysis, 81, 193-203.
Reda, A., Rawlinson, A., Sultan, I. A., Elgazzar, M. A., & Howard, I. M. (2020). Guidelines for safe cable crossing over a pipeline. Applied Ocean Research, 102, 102284.
Reda, A., Elgazzar, M. A., Thiedeman, J., McKee, K. K., Sultan, I. A., & Shahin, M. A. (2021a). Design of subsea cables/umbilicals for in-service abrasion-Part 2: Mechanisms. Ocean Engineering, 234, 109098.
Reda, A., Thiedeman, J., Elgazzar, M. A., Shahin, M. A., Sultan, I. A., & McKee, K. K. (2021b). Design of subsea cables/umbilicals for in-service abrasion-Part 1: Case studies. Ocean Engineering, 234, 108895.
Resources, U. S. I.-a. C. o. W. (1957). A Study of Methods Used in Measurement and Analysis of Sediment Loads in Streams: Some fundamentals of particle size analysis. St. Anthony Falls Hydraulic Laboratory.
Rodi, W. (1987). Examples of calculation methods for flow and mixing in stratified fluids. Journal of Geophysical Research: Oceans, 92(C5), 5305-5328.
Romdani, A., Tsai, S.-D., Tsai, W.-Z., Lin, Y.-C., & Chen, J.-L. (2022). A numerical investigation on the occurrence of the typhoon-triggered density currents of the 2008-flood event. Coastal and Offshore Science and Engineering, 100-116.
Sanford, L. P., & Maa, J. P. Y. (2001). A unified erosion formulation for fine sediments. Marine Geology, 179(1), 9-23. https://doi.org/https://doi.org/10.1016/S0025-3227(01)00201-8
Sequeiros, O. E. (2008). Bedload transport, self acceleration, downstream sorting, and flow dynamics of turbidity currents. University of Illinois at Urbana-Champaign.
Sequeiros, O. E., Naruse, H., Endo, N., Garcia, M. H., & Parker, G. (2009). Experimental study on self‐accelerating turbidity currents. Journal of Geophysical Research: Oceans, 114(C5).
Sequeiros, O. E. (2012). Estimating turbidity current conditions from channel morphology: A Froude number approach. Journal of Geophysical Research: Oceans, 117(C4).
Sequeiros, O. E., Mosquera, R., & Pedocchi, F. (2018). Internal structure of a self‐accelerating turbidity current. Journal of Geophysical Research: Oceans, 123(9), 6260-6276.
Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling, 9(4), 347-404.
Tsai, S.-D., Chen, J.-L., Hsu, W.-Y., Tsai, W.-Z., & Romdani, A. (2023). A numerical investigation of the transport process of density currents over steep slopes and its implications for subsea cable breaks. Ocean Engineering, 269, 113446.
Umlauf, L., & Burchard, H. (2003). A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 61(2), 235-265.
Van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas (Vol. 1006). Aqua publications Amsterdam.
Wang, F., Dai, Z., Nakahara, Y., & Sonoyama, T. (2018). Experimental study on impact behavior of submarine landslides on undersea communication cables. Ocean Engineering, 148, 530-537.
Wang, Y. H., Lee, I. H., & Liu, J. T. (2008). Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan. Estuarine, Coastal and Shelf Science, 80(1), 153-160. https://doi.org/https://doi.org/10.1016/j.ecss.2008.07.016
Warner, J. C., Sherwood, C. R., Arango, H. G., & Signell, R. P. (2005). Performance of four turbulence closure models implemented using a generic length scale method. Ocean modelling, 8(1-2), 81-113.
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., & Arango, H. G. (2008). Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & geosciences, 34(10), 1284-1306.
Warner, J. C., Armstrong, B., He, R., & Zambon, J. B. (2010). Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean modelling, 35(3), 230-244.
White, F. M. (2016). Fluid Mechanics 8th ed. In SI Units.
Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models. AIAA journal, 26(11), 1299-1310.
Winterwerp, J. (2001). Stratification effects by cohesive and noncohesive sediment. Journal of Geophysical Research: Oceans, 106(C10), 22559-22574.
Yalin, M. S. (1976). Mechanics of sediment transport [by] M. Selim Yalin.
Zakeri, A., Høeg, K., & Nadim, F. (2008). Submarine debris flow impact on pipelines—Part I: Experimental investigation. Coastal engineering, 55(12), 1209-1218.
Zakeri, A. (2009). Submarine debris flow impact on suspended (free-span) pipelines: Normal and longitudinal drag forces. Ocean Engineering, 36(6-7), 489-499.
王君豪(2007)。高屏溪口流場三維結構的觀測分析。國立中山大學海洋物理研究所。
吳孟麟(2004)。高屏海底峽谷與陸棚流場之研究。國立中山大學海洋地質及化學研究所。
林之詠(2016)。臺灣海峽表層沉積物物理及地球化學特性的空間分布探討。國立中山大學海洋科學系研究所。
林鈺淇(2019)。高屏溪懸沙濃度觀測與高屏海底峽谷異重流數值模擬研究。國立成功大學水利及海洋工程研究所。
張育嘉(2001)。高屏峽谷及附近海域之流場觀測。國立中山大學海洋資源學系研究所。
曾世霖(2011)。台灣西南外海高屏峽谷沉積物及沉積機制研究。國立中央大學地球物理研究所。
楊仁凱(2010)。沖淡水中粒徑結構之時空變化。國立中山大學海洋地質及化學研究所。
經濟部水利署水利規劃試驗所(2007)。高屏溪治理規劃檢討。
經濟部水利署南區水資源局(2008)。高屏堰整體加高對其上下游河段沖淤影響之研究。
經濟部水利署第七河川局(2015)。高屏溪河口輸沙對臨近海岸之影響評估(2/2)。
經濟部水利署第六河川局(2009)。高雄海岸基本資料監測調查(鳳鼻頭至高屏溪口及興達港至二仁溪口)。
葉祈賢(2012)。異重流衝擊水平圓柱之實驗流場及受力分析。國立臺灣大學土木工程研究所。
蔡聖德(2021)。數值模式ROMS應用於高屏海底峽谷異重流之研究。國立成功大學水利及海洋工程研究所。
賴進松(1999)。高屏溪河口感潮水理及鹽分入侵之研究。 高雄市:曹公農業水利研究發展基金會。