簡易檢索 / 詳目顯示

研究生: 郭家良
Kuo, Chia-Liang
論文名稱: 奈米非化學劑量比鈮酸鋰之合成及性質研究
Synthesis and investigations of nanocrystalline non-stoichiometric lithium niobate
指導教授: 黃文星
Hwang, Weng-Hsing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 鈮酸鋰拉曼光譜介電相分離
外文關鍵詞: lithium niobate, Raman spectrum, dielectrics, phase split
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米鈮酸鋰粉體可經由燃燒法以硝酸鋰、草酸銨鈮與甘胺酸為原料,經600 oC煆燒熱處理後成功的合成。鈮酸鋰晶體的熱分析、晶體結構、晶體鍵結、表面形貌與介電性質將由視差與熱重分析儀、X光繞射、拉曼光譜、掃描與穿透式電子顯微鏡及多功能電表來得到。
    經由熱分析結果,顯示鈮酸鋰晶體的結晶化溫度為580 oC,所合成的鈮酸鋰晶體晶粒尺寸約為29–38 nm,在Ψ值為2的時候具有最小的晶粒尺寸,Ψ值為3則具有最高的結晶強度。當煆燒溫度為900 oC,部分鈮酸鋰晶體出現Li3NbO4 and LiNb3O8的二次相,只有鋰含量佔金屬離子總量40~43%時,才能在高溫中保持純相鈮酸鋰結構。
    43Li-LN鈮酸鋰晶體內的結構主要靠著鋰離子的移動造成O-Nb-O與O-Li-O鍵角的改變引發NbO6支架的鍵長伸縮來產生相分離現象,在接近熔融狀態降溫後,其表面形成的微細方晶體,晶體內部鍵結亦回復成原先的型態。43Li-LN鈮酸鋰的介電常數在燒結溫度低於1000oC時常現正相關性,但隨著燒結溫度高於1000oC後,由於晶界的減少與裂縫的形成使得介電常數隨燒結溫度的上升而下降,介電損失的降低是來自晶體內的缺陷因相分離而減少。

    Lithnium niobate (LiNbO3) can be obtained by mixing lithium nitrate (LiNO3), ammonium niobate oxalate hydrate (C4H4NNbO9) and glycine and then calcining at 600oC for 1 h. The thermal analysis, structure, morphology, and dielectric property of the as-prepared LiNbO3 were characterized by thermogravimetric and differential thermal analyses (TG/DTA), X-ray diffraction (XRD) , Raman spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and multimeter. The crystallization temperature of LiNbO3 precursor is 580 oC based on the TG/DTA results. After being calcined at 600oC, the structure of the LiNbO3 synthesized using various ratios of glycine to metal nitrates (Ψ-value) was formed with a particle size of about 29–38 nm, as found by XRD analysis. The crystal size has the lowest value at Ψ= 2, and the highest level of crystallization is at Ψ= 3.When the calcination temperature reached 900 oC, the secondary phases Li3NbO4 and LiNb3O8 were observed. The lithium concentration before 900oC was 40–43%. When the calcination temperature was higher than 900oC, the major Li0.91NbO3 phase and the minor LiNbO3 phase coexisted in the nonstoichiometric lithium niobate with 43% lithium content.
    After sintering at 1100oC, the structure of the Li0.43Nb0.57O3+δ was similar to the single crystal of lithium niobate. The thermal vibration of the elements caused the bond length of the NbO6 framework and angle bending of the O-Nb-O to increase, and the structure was restored by the formation of square crystals in the quasi-melting Li0.43Nb0.57O3+δ matrix. The dielectric constant increased with the increasing sintering temperature before 1000 oC, and then fell due the formation of split seam . The reduction in defects forming from the Li-site vacancies lowered the dissipation factor at higher sintering temperatures.

    摘要 I Abstract II 圖目錄 VI 表目錄 IX 符號表 X 第一章 緒論 1 1-1 前言 1 1-2 鈦酸鋇介電材料 3 1-3 研究動機 4 第二章 基礎理論 8 2-1 介電性質 8 2-2 鈮酸鋰晶體的研究進展 21 2-3 鈮酸鋰研究現況 29 2-4濕式化學法合成鈮酸鋰粉體 31 2-5燃燒法製程簡介 36 第三章 實驗方法 39 3-1奈米鈮酸鋰粉體之製備 39 3-2 鈮酸鋰燒結體之製備 40 3-3 試片檢測分析 40 第四章 結果與討論 44 4-1 燃燒法製備奈米鈮酸鋰粉體 44 4-2 非化學劑量比鈮酸鋰粉體結構分析 56 4-3 非化學劑量比高溫燒結鈮酸鋰材料之結構變化 69 4-4非化學劑量比鈮酸鋰材料之介電性質 79 第五章 結論 82 參考文獻 84 自述 93 誌謝 95

    [1] M. T. Buscaglia, V. Buscaglia, M. Viniain, J.Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni and M. Nygren.,"Ferroelectric ptoperties of dense nanocrystlline BaTiO3 ceramic", Nanotechnol., 15 (2004) 1113.
    [2] M. Manso-Silván, L. Fuentes-Cobas, R.J. Martı́n-Palma, M. Hernández-Vélez and J.M. Martnez-Duart,"BaTiO3 thin film obtained by sol-gel spin coating", Surface and Coatings Technology, 151-152 (2002) 118.
    [3] M. H. Frey and D. A. Payne ,"Grain-size Effect on Structure and Phase Transformations for Barium Titanate", Phys. Rev. B., 54 (1996) 3158.
    [4] Z. Yu, C. Ang, R. Guo, and A. S. Bhalla,"Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field", Appl. Phys. Lett., 81 (2002) 1285.
    [5] C. Ang, R. Guo, A. S. Bhalla, and A. S. Bhalla,"Ferroelectric relaxor behavior of Ba(Ti0.7Zr0.3)O3", Appl. Phys. Lett, 92 (2002) 2655.
    [6] F. D. Morrison, A. M. Coats, D. C. Sinclair, and A. R. West,"Charge Compensation Mechanisms in La-Doped BaTiO3", J. Electroceramics, 6 (2001) 219.
    [7] G. Li, Y. Uesu, and K. Kohn,"Structure Characterization of the complex perovskites Ba1-xLaxTi1-x CrxO3", J. Solid State Chem., 164 (2002) 98-105.
    [8] D. Li, and M.A. Subramanian,"Noval tunable ferroelectric compositions: Ba1-xLnx Ti1-xMxO3(Ln=La,Sm,Gd,Dy. M=Al, Fe, Cr)", Solid State Sci., 2 (2000) 507.
    [9] D. F. K. Hennings, and H. Schreinemacher,"Ca-acceptors in Dielectric Ceramic Sintered in Reducive Atmpspheres", J. Euro. Ceram. Soc., 15 (1995) 795.
    [10] V. A. Bokov, and I. E. Myl'nikova,"Electric and Optical Properties of Single Crystal of Ferroelectric with a Diffuse Phase Transition", Sov. Phys. Solid State, 3 (1961) 613.
    [11] M. Yokosuka,"Dielectric Dispersion of the Complex Perovskite Oxide Ba(Fe0.5Nb0.5)O3 at Low Frequencies", Jpn. J. Appl. Phys., 34 (1995) 5338.
    [12] S. Saha and T. P. Sinha, "Structure and Dielectric of Ba(Fe0.5Nb0.5)O3", Sinha, J. Phys:Condens. Matter, 14 (2002) 249.
    [13] I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and L. Jastrabik,"High dielectric permittivity in AFe1/2Nb1/2O3 nonferroelectric perovskite ceramic (A=Ba,Sr,Ca;B=Nb,Ta,Sb)", J. Appl. Phys., 93 (2003) 4130.
    [14] P. Lerner, C. Legras, and J.P. Dumas,"Stoechiométrie des monocristaux de métaniobate de lithium", J. Cryst. Growth, 3-4 (1968) 231.
    [15] A. Savage,"Pyroelectricity and spontaneous polarization in LiNbO3", J. Appl. Phys., 37 (1966)3071.
    [16] M. A. F. Abdi, P. Bourson, M. D. Fontana, and K. Polgar "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition ", J. Appl. Phys., 84 (1998) 2251.
    [17] K. G. Karapetyan, A. A. Kteyan , and R. A. Vardanyan,"Thermal reduction effect on Curie temperature of LiNbO3 ferroelectrics", Solid State Comm., 14 (2006) 474.
    [18] 吳朗, 電子陶瓷(介電陶瓷), 全欣出版社, 1994.
    [19] M. H. Frey, and D. A. Payne, "Grain-size Effect on Structure and Phase Transformations Barium Titanate", Phys. Rev .B., 54 (1996) 3158.
    [20] W. Y. Shih, W. H. Shih, and I. A. Aksay "Size dependence of the ferroelectric transition of small BaTiO3 particles: Effect of depolarization", Phys. Rev .B., 50 (1994) 15575.
    [21] W. Känzig, Ferroelectrics and Antiferroelectrics, Academic, New York, 1957.
    [22] G. Arlt, and P. Sasko,"Domain Configuration and Equilibrium Size of Domain in BaTiO3 Ceramics", J. Appl. Phys., 51 (1980) 4956.
    [23] 張益新, 鈦鐵礦結構 Zn1-xAxTi1-yByO3 之合成及性質研究, 國立成功大學材料科學及工程博士論文, 2004.
    [24] N. A. Setter and L.E. Cross,"The contribute of structure disorder to diffuse phase transition in ferroelectrics", J. Mater. Sci., 15 (1980) 2478.
    [25] 鐘喬斌, 鍶鋇鈮之燒結機構及晶粒成長之理論探討, 國立成功大學材料科學及工程碩士論文, 2005.
    [26] I. P. Raevski, and S. A. Prosandeev,"A new, lead free, family of perovskites with a diffuse phase transition: NaNbO3-based solid solutions", J. Phys. Chem. Solids., 63 (2002) 1939.
    [27] H. T. Martirena and J. C. Burfoot,"Grain-size effects on properties of some ferroelectric ceramics", J. Phys. C: Solid State Phys. , 7 (1974) 3182.
    [28] D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West ,"CaCu3Ti4O12: One-Step Internal Barrier Layer Capacitor", Appl. Phys. Lett., 80 (2002) 2153.
    [29] D. Hennings, A. Schnell, and G. Simon,"Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics", J. Am. Ceram. Soc., 65 (1982) 539.
    [30] S.M. Neirman,"The Curie Point Temperature Of Ba(Ti1-xZrx)O3 Solid Solution", J. Mater. Sci., 23 (1988) 3973.
    [31] F. D. Morrison, D. C. Sinclair and A. R. West,"Doping mechanisms and electrical properries of La-doped BaTiO3 ceramics", International J. of Inorganic Mater., 3 (2001) 66.
    [32] L.E. Cross,"Relaxor Ferroelectric", Ferroelectrics, 76 (1987) 241.
    [33] A. Chelkowski, Dielectric Physics, Silesian University Katowice, Poland, 1979.
    [34] W.H. Zachariasen,"Untersuchungen über die Kristallstruktur von Sesquioxyden und Verbindungen ABO3", Skrifter utgitt av Det Norske Videnskaps-Akademi. Matem.-naturvid. Klasse, 4 (1928)6.
    [35] B.T. Matthias and J.P. Remeika,"Ferroelectrity in the illmenite structure", Phys. Rev., 76 (1949).
    [36] A.A. Ballman,"Growth of piezoelectric and ferroelectric materials by the Czochralski technique", J. Am. Ceram. Soc., 48 (1965)112.
    [37] R.L. Byer, J.F. Young and R.S. Feigelson "Growth of High‐Quality LiNbO3 Crystals from the Congruent Melt", J. Appl. Phys., 41 (1970) 2320.
    [38] F. Wu, S. Luo, J. Wang and X. Sun,"Defect structure and optical damage resistance of In:Fe:Cu:LiNbO3 crystals with various [Li]/[Nb] ratios", Cryst. Res. Technol., 46 (2011) 183.
    [39] V.T. Gabrielyan, E.L. Lebedeva, and A.L. Pirozerski, S.A. Normatov ,"Influence of K, Mg and Fe impurities on the composition, absorption spectra and photovoltaic properties of LiNbO3 crystals ", Ferroelectrics, 281 (2002) 151.
    [40] D.L. Zhang, P.R. Hua, and E.Y.B. Pun,"Er3+ diffusion in congruent LiNbO3 crystal doped with 4.5 mol % MgO", J. Appl. Phys., 101 (2007) 113513.
    [41] K.K.Y. Furukawa, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, and J.M. Martin,"The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure", J. Cryst. Growth, 211 (2000) 230.
    [42] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi,"Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system", J. Cryst. Growth, 116 (1992) 327.
    [43] G. I. Malovichko, V.G. Grachev, L.P. Yurchenko, V.Y. Proshko, E.P. Kokanyan and V.T. Grbrielyan, "Improvement of LiNbO3 Microstructure by Crystal Growth with Potassium", Physical Status Solidi A, 133 (1992) K29.
    [44] Y.L. H. Hatano, K. Kitamura, in Photorefractive Materials and Their Applications 2,, Springer, 2007.
    [45] K.K. Wong, Properties of Lithium Niobate, INSPEC, The Insitution of Electrical Engineers, London, United Kingdom, 2002.
    [46] H. Fay, W.J. Alford and H.M. Dess,"Depence of second‐harmonic phase-matching temperature in LiNbO3 crystals on melt composition", Appl. Phys, Lett, 12 (1968) 69.
    [47] G.E. Peterson, M. Glass, A. Carnevale and P. M. Bridenbaugh "Control of Laser Damage in LiNbO3", J. Am. Ceram. Soc., 56 (1973) 278.
    [48] D.M. Smyth,"Defects and transport in LiNbO3 ", Ferroelectrics, 50 (1983) 93.
    [49] H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, "Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations", Phys. Rev. B 78 (2008) 174103.
    [50] X.Y. Meng, Z. Z. Wang, Y. Zhu, and C.T. Chen "Mechanism of the electro-optic effect in the perovskite-type ferroelectric KNbO3 and LiNbO3 ", J. Appl. Phys. , 101 (2007) 103506.
    [51] A.M. Glass, K. Nassau, and T.J. Negran,"Ionic conductivity of quenched alkali niobate and tantalate glasses ", J. Appl. Phys., 49 (1978) 4808-4811.
    [52] S.J. Kim, J.E. Kim, K. Ohshima, Y.H. Hwang, and Y.S. Yanga,"Crystallization and dielectric properties of 4LiNbO3–SiO2 glass", Mater. Sci. Eng., A 375-377 (2004) 1255.
    [53] P. Prapitpongwanich, R. Harizanova, K. Pengpat, and C. Rüssel, "Nanocrystallization of ferroelectric lithium niobate in LiNbO3-SiO2 glasses", Mater. Lett., 63 (2009) 1027.
    [54] M.P.F. Graça, M.G. Ferreira da Silva, and M.A. Valente, "Dielectric and structural studies of a SiO2–Li2O–Nb2O5 glass and glass-ceramic prepared by the sol–gel method", J Non-Cryst. Solids, 351 (2005) 2951.
    [55] N. Klein, E. Hollenstein, D. Damjanovic, H. J. Trodahl, N. Setter, and M. Kuball,"A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy", J. Appl. Phys. , 102 (2007) 014112.
    [56] S. C. Lee, L. Wang, H. G. Yeo, J. H. Cho, Y. S. Sung, M. H. Kim, T. K. Song, S. S. Kim, and B. C. Choic, "Effects of A-Site Ionic Contents on Piezoelectric and Ferroelectric Properties of Lead-Free (K0.5Na0.5)NbO3-LiNbO3 Ceramics", Ferroelectrics, 381 (2009) 176.
    [57] J. Yu, X. Liua, "Hydrothermal synthesis and characterization of LiNbO3 crystal", Mater. Lett., 61 (2007) 355.
    [58] M. Liu and D. Xue, "Amine-Assisted Route To Fabricate LiNbO3 Particles with a Tunable Shape", J. Phys. Chem. C, 112 (2008) 6346.
    [59] M. Liu, D. Xue, "A solvothermal route to crystalline lithium niobate", Mater. Lett., 59 (2005) 2908.
    [60] Y. Lin, H. Yang, J. Zhu, F. Wang and H. Luo, "Low-temperature rapid synthesis of LiNbO3 powder by molten salt methods", Materials Manuf. Process. 23 (2008) 791.
    [61] Z. Li, T. Yu, and Z. Zou, "Degradation in photocatalytic activity induced by hydrogen-related defects in nano-LiNbO3 material", Appl. Phys, Lett, 88 (2006) 071917.
    [62] B. Knabe, D. Schu tze, T. Jungk, M. Svete, W. Assenmacher, W. Mader, and K. Buse, "Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method", Phys. Status Solidi A, 208 (2011) 857.
    [63] A.Z. Simoes, A.H.M. Gonzalez, A.A. Cavalheiro, M.A. Zaghete, B.D. Stojanovic, and J.A. Varela,"Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors", Ceram. Int., 28 (2002) 265.
    [64] E.R. Camargo and M. Kakihana,"Chemical synthesis of lithium niobate powders (LiNbO3) prepared from water-soluble DL-Malic acid complexes", Chem. Mater., 13 (2001) 1905.
    [65] 曹茂盛, 奈米材料導論, 學富文化, 台灣, 2002.
    [66] C. Sikalidis, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, InTech, 2011.
    [67] J.F. Crider,"Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials", Ceram. Eng. Sci. Proc., 3 (1982) 519.
    [68] S. Kumar,"Self-Propagating High Temperature Synthesis of Refractory Nitrides, Carbides and Borides", Key Engineering Materials, 56-57 (1991) 183-188.
    [69] B.D. Cullity, Element of X-ray Diffraction, 2nd edition,, Addison-Wesley Publishing Company, 1978.
    [70] H. Toraya, M. Yoshimura and S. Somiya, " Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 System by X-ray diffraction ", J. Am. Ceram. Soc., 67(1981) C-119.
    [71] C.C. Hwang, and T.Y. Wu ,"Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants—influence of reactant composition", J. Mater. Sci. Lett., 39 (2004) 6111 .
    [72] Y. Repelin, E. Hussonb, F. Bennani, and C. Proust," Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations" J. Phys. Chem. Solids, 60 (1999) 819.

    下載圖示 校內:2014-02-06公開
    校外:2014-02-06公開
    QR CODE