| 研究生: |
蘇育漢 Su, Yu-Han |
|---|---|
| 論文名稱: |
血流限制合併低能量雷射在神經肌肉控制的立即性效應 The immediate effect of combined blood flow restriction and low-level laser therapy on neuromuscular control |
| 指導教授: |
黃英修
Hwang, Ing-Shiou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 血流限制 、低能量雷射 、力量波動 、肌肉血氧飽和度 、肌電圖 |
| 外文關鍵詞: | blood flow restriction, low-level laser therapy, force fluctuations, muscle oxygen saturation, EMG |
| 相關次數: | 點閱:86 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:低能量雷射最近被證實在耐力或阻力運動訓練可減緩肌肉疲勞。本研究探討低能量雷射應用的創新嘗試,了解血流限制合併低能量雷射在肌肉活化與動態力量表現的立即性效果,作為延緩血流限制所引發肌肉疲勞的參考。
方法:15名無神經肌肉疾病的健康成年人 (平均年齡 : 28.1±4.6歲) 參與本實驗。受試者在至少2天的間隔,以隨機方式下列三種實驗情況完成靜態肌肉收縮:包含血流限制合併低能量雷射(BFR+LLLT)、血流限制合併假雷射輸出(BFR)以及對照(NR)(無血流限制與假雷射輸出)。實驗情況包含了前測期,介入期以及立即性後測。前測期量測收縮壓、休息時1分鐘血氧平均值、以及最大用力收縮。受試者在不同的實驗情況的介入期接受不同的介入。在血流限制合併低能量雷射情況中,伸腕肌接受60焦耳低能量雷射的照射,並在肱二頭肌肌腹用加壓帶以百分之六十的收縮壓限制血流4分鐘;在血流限制合併假雷射輸出情形下,除了低能量雷射照射輸出之外,血流限制的實驗步驟與血流限制合併低能量雷射情況相同。在對照情形下,受試者沒有接收有效的雷射照射與血流限制。受試者在立即性後測,透過視覺回饋進行百分之二十的最大用力收縮且穩定的施力追蹤活動。在不同介入情形下,比較立即性後測各項參數的差異,包括:力量收縮波動、肌肉活化、以及標準化血氧飽和度等等。
結果:在立即性後測標準化肌肉血氧飽和度隨介入情形有明顯的差異 (NR> BFR+LLLT> BFR),以前測期的肌肉血氧飽和度為參考基準,合併低能量雷射情況可有效降低單純血流限制所造成的肌肉血氧飽和度下降。立即性後測力量波動的平均頻率 (mean frequency) 及頻率自由度 (spectral degree of freedom) 隨介入情形有明顯的差異 (BFR+LLLT > BFR);肌肉活化方面,立即性後測肌電圖的均方根值及0到4赫茲共調頻譜 (EMG-EMG coherence spectra) 則未達到顯著的差異。
結論:本實驗首次探討血流限制合併低能量雷射在力量波動、肌肉活化及肌肉血氧飽和度等特徵改變的立即效果。實驗新發現顯示:相較單純血流限制,合併低能量雷射在血流限制下的低強度收縮,可以帶來較少的肌肉血氧飽和度降低、以及施力修正頻率與多樣性的增加,此生理適應現象對於肌力訓練有安全性提高、與施力精準的正面潛在效益,未來需要更進一步探討血流限制合併低能量雷射的長期肌肉訓練效益與其生理機制。
Objective: Low-level laser therapy (LLLT) have been recently proved to alleviate muscle fatigue during endurance or resistance training. The aim of this study was to investigate the immediate effect of combined LLLT with blood flow restriction (BFR) on force fluctuations, muscle activation and muscle oxygen saturation of hemoglobin/myoglobin during a low-load exercise, as an innovative LLLT application on muscle training.
Methods: Fifteen healthy adults (mean age : 28.1±4.6 years) without diagnosed neuromuscular disease were included in the study of a crossover randomized design. All participants completed a static isometric contraction of 20% maximal voluntary contraction under three conditions (blood flow restrictions with low-level laser therapy (BFR+LLLT), blood flow restrictions without low-level laser therapy (BFR), no restriction (NR)), interleaved with at least two days among various experimental conditions. All conditions were comprised of baseline period, intervention session, and immediate after-test. The baseline measures included systolic blood pressure, 1-minute muscle oxygen saturation (SmO2) in the rest, and maximum voluntary contractions (MVC). During the intervention session, in the BFR+LLLT condition, the subjects received 60 Joule low-level laser therapy and blood flow restriction with 60% of systolic blood pressure applied on the belly of the biceps brachii for another 4 minutes. The experimental procedure in the BFR condition was the same in the BFR+LLLT condition, except for sham laser therapy. In the NR condition, the participants received sham laser therapy without receiving blood flow restriction. During the immediate after-test, the participants conducted a static force tracking under visual guidance. Parametric differences in the immediate after-test were contrasted among intervention approaches, including force fluctuations, muscle activation, and normalized muscle oxygen saturation.
Results: In the immediate after-test, normalized muscle oxygen saturation were significantly different with intervention approaches (NR> BFR+LLLT> BFR). In reference to baseline muscle oxygen saturation, combined LLLT with BFR resulted in a smaller reduction in muscle oxygen saturation than BFR. Force fluctuation characteristics also varied with intervention, with increasing trends for mean frequency and spectral degree of freedom for the combined approach (BFR+LLLT> BFR). However, muscle activation patterns in the immediate after-test of the BFR condition, including root mean square and peak EMG-EMG coherence spectra under 4 Hz, were not significantly different as compared with those of combined LLLT and BFR.
Conclusion: It was the first time to reveal immediate effect of combined LLLT with BFR on force fluctuation dynamics, muscle activation, and oxygen saturation of hemoglobin/myoglobin. The novel finding is that combined LLLT with BFR leads to a smaller reduction in muscle oxygen saturation with more frequent and intricate correction attempts in the immediate after-test, as compared to traditional BFR. The adaptive phenomenon is advantageous to training safety and force precision control. Long-term effect of muscle training with combined LLLT with BFR and underlying physiological mechanisms need further investigation.
Abe, T., Kearns, C. F., & Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of applied physiology, 100(5), 1460-1466.
Amann, M., Blain, G. M., Proctor, L. T., Sebranek, J. J., Pegelow, D. F., & Dempsey, J. A. (2011). Implications of group III and IV muscle afferents for high‐intensity endurance exercise performance in humans. The Journal of physiology, 589(21), 5299-5309.
Amann, M., & Dempsey, J. A. (2016). Ensemble input of group III/IV muscle afferents to CNS: a limiting factor of central motor drive during endurance exercise from normoxia to moderate hypoxia Hypoxia (pp. 325-342): Springer.
Amann, M., & Light, A. R. (2015). From Petri dish to human: new insights into the mechanisms mediating muscle pain and fatigue, with implications for health and disease. Experimental physiology, 100(9), 989.
Assis, L., Yamashita, F., Magri, A. M., Fernandes, K. R., Yamauchi, L., & Renno, A. (2015). Effect of low-level laser therapy (808 nm) on skeletal muscle after endurance exercise training in rats. Brazilian journal of physical therapy(AHEAD), 00-00.
Bailey, T. G., Birk, G. K., Cable, N. T., Atkinson, G., Green, D. J., Jones, H., et al. (2012). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. American Journal of Physiology-Heart and Circulatory Physiology, 303(5), H533-H538.
Baroni, B. M., Junior, E. C. P. L., De Marchi, T., Lopes, A. L., Salvador, M., & Vaz, M. A. (2010). Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. European journal of applied physiology, 110(4), 789-796.
Baroni, B. M., Leal Junior, E. C. P., Geremia, J. M., Diefenthaeler, F., & Vaz, M. A. (2010). Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomedicine and laser surgery, 28(5), 653-658.
Behringer, M., & Willberg, C. (2019). Application of Blood Flow Restriction to Optimize Exercise Countermeasures for Human Space Flight. Frontiers in physiology, 10.
Chow, R. T., Johnson, M. I., Lopes-Martins, R. A., & Bjordal, J. M. (2009). Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. The Lancet, 374(9705), 1897-1908.
Cook, S. B., Clark, B. C., & Ploutz-Snyder, L. L. (2007). Effects of exercise load and blood-flow restriction on skeletal muscle function. Medicine and science in sports and exercise, 39(10), 1708-1713.
Cook, S. B., LaRoche, D. P., Villa, M. R., Barile, H., & Manini, T. M. (2017). Blood flow restricted resistance training in older adults at risk of mobility limitations. Experimental gerontology, 99, 138-145.
Costes, F., Prieur, F., Féasson, L., Geyssant, A., Barthélémy, J.-C., & Denis, C. (2001). Influence of training on NIRS muscle oxygen saturation during submaximal exercise. Medicine and science in sports and exercise, 33(9), 1484-1489.
das Neves, M. F., dos Reis, M. C. R., de Andrade, E. A. F., Lima, F. P. S., Nicolau, R. A., Arisawa, E. Â. L., et al. (2016). Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. Lasers in medical science, 31(7), 1293-1300.
de Almeida, P., Lopes-Martins, R. Á. B., De Marchi, T., Tomazoni, S. S., Albertini, R., Corrêa, J. C. F., et al. (2012). Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers in medical science, 27(2), 453-458.
de Brito Vieira, W. H., Bezerra, R. M., Queiroz, R. A. S., Maciel, N. F. B., Parizotto, N. A., & Ferraresi, C. (2014). Use of low-level laser therapy (808 nm) to muscle fatigue resistance: a randomized double-blind crossover trial. Photomedicine and laser surgery, 32(12), 678-685.
de Brito Vieira, W. H., Ferraresi, C., de Andrade Perez, S. E., Baldissera, V., & Parizotto, N. A. (2012). Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers in medical science, 27(2), 497-504.
De Marchi, T., Junior, E. C. P. L., Bortoli, C., Tomazoni, S. S., Lopes-Martins, R. Á. B., & Salvador, M. (2012). Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers in medical science, 27(1), 231-236.
de Oliveira, A. R., Vanin, A. A., Tomazoni, S. S., Miranda, E. F., Albuquerque-Pontes, G. M., De Marchi, T., et al. (2017). Pre-exercise infrared photobiomodulation therapy (810 nm) in skeletal muscle performance and postexercise recovery in Humans: What is the optimal power output? Photomedicine and laser surgery, 35(11), 595-603.
de Oliveira Melo, M., Pompeo, K. D., Baroni, B. M., & Vaz, M. A. (2016). Effects of neuromuscular electrical stimulation and low-level laser therapy on neuromuscular parameters and health status in elderly women with knee osteoarthritis: a randomized trial. Journal of rehabilitation medicine, 48(3), 293-299.
de Souza, C. G., Borges, D. T., de Brito Macedo, L., & Brasileiro, J. S. (2016). Low-level laser therapy reduces the fatigue index in the ankle plantar flexors of healthy subjects. Lasers in medical science, 31(9), 1949-1955.
Dideriksen, J. L., & Farina, D. (2019). Amplitude cancellation influences the association between frequency components in the neural drive to muscle and the rectified EMG signal. PLoS computational biology, 15(5), e1006985.
Dornelles, M. P., Fritsch, C. G., Sonda, F. C., Johnson, D. S., Leal-Junior, E. C. P., Vaz, M. A., et al. (2019). Photobiomodulation therapy as a tool to prevent hamstring strain injuries by reducing soccer-induced fatigue on hamstring muscles. Lasers in medical science, 1-8.
Eberstein, A., & Beattie, B. (1985). Simultaneous measurement of muscle conduction velocity and EMG power spectrum changes during fatigue. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 8(9), 768-773.
Fatela, P., Reis, J. F., Mendonca, G. V., Avela, J., & Mil-Homens, P. (2016). Acute effects of exercise under different levels of blood-flow restriction on muscle activation and fatigue. European journal of applied physiology, 116(5), 985-995.
Fatela, P., Reis, J. F., Mendonca, G. V., Freitas, T., Valamatos, M. J., Avela, J., et al. (2018). Acute Neuromuscular Adaptations in Response to Low-Intensity Blood-Flow Restricted Exercise and High-Intensity Resistance Exercise: Are There Any Differences? The Journal of Strength & Conditioning Research, 32(4), 902-910.
Ferraresi, C., de Brito Oliveira, T., de Oliveira Zafalon, L., de Menezes Reiff, R. B., Baldissera, V., de Andrade Perez, S. E., et al. (2011). Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers in medical science, 26(3), 349-358.
Fritsch, C. G., Dornelles, M. P., Severo-Silveira, L., Marques, V. B., de Albuquerque Rosso, I., & Baroni, B. M. (2016). Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: randomized, double-blind, placebo-controlled trial. Lasers in medical science, 31(9), 1935-1942.
Fujita, S., Abe, T., Drummond, M. J., Cadenas, J. G., Dreyer, H. C., Sato, Y., et al. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of applied physiology, 103(3), 903-910.
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological reviews, 81(4), 1725-1789.
Gorgey, A. S., Wadee, A. N., & Sobhi, N. N. (2008). The effect of low-level laser therapy on electrically induced muscle fatigue: a pilot study. Photomedicine and laser surgery, 26(5), 501-506.
Hackney, K., Olson, B., Schmidt, A., Nelson, A., & Zacharias, E. (2016). Acute Muscular, Metabolic, Cardiovascular, and Perceptual Responses to Low Cuff Pressure-small Cuff Width Blood Flow Restricted Exercise Prescription. J Nov Physiother, 6(299), 2.
Incognito, A. V., Doherty, C. J., Lee, J. B., Burns, M. J., & Millar, P. J. (2017). Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men. Physiological reports, 5(14), e13342.
Ito, N., Ruegg, U. T., Kudo, A., Miyagoe-Suzuki, Y., & Takeda, S. i. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nature medicine, 19(1), 101.
Junior, E. C. P. L., Lopes-Martins, R. Á. B., Baroni, B. M., De Marchi, T., Taufer, D., Manfro, D. S., et al. (2009). Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers in medical science, 24(6), 857.
Junior, E. C. P. L., Lopes-Martins, R. Á. B., Vanin, A. A., Baroni, B. M., Grosselli, D., De Marchi, T., et al. (2009). Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers in medical science, 24(3), 425-431.
Killinger, B., Lauver, J. D., Donovan, L., & Goetschius, J. (2019). The Effects of Blood Flow Restriction on Muscle Activation and Hypoxia in Individuals with Chronic Ankle Instability. Journal of sport rehabilitation, 1-25.
Kubota, A., Sakuraba, K., Koh, S., Ogura, Y., & Tamura, Y. (2011). Blood flow restriction by low compressive force prevents disuse muscular weakness. Journal of Science and Medicine in Sport, 14(2), 95-99.
Lang, F. (2007). Mechanisms and significance of cell volume regulation. Journal of the American college of nutrition, 26(sup5), 613S-623S.
Lang, F., Busch, G. L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., et al. (1998). Functional significance of cell volume regulatory mechanisms. Physiological reviews, 78(1), 247-306.
Leal-Junior, E. C. P., Vanin, A. A., Miranda, E. F., de Carvalho, P. d. T. C., Dal Corso, S., & Bjordal, J. M. (2015). Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers in Medical Science, 30(2), 925-939.
Leal, E. C. P., Lopes-Martins, R. Á. B., Frigo, L., De Marchi, T., Rossi, R. P., De Godoi, V., et al. (2010). Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. journal of orthopaedic & sports physical therapy, 40(8), 524-532.
Leonard, C. T., Kane, J., Perdaems, J., Frank, C., Graetzer, D. G., & Moritani, T. (1994). Neural modulation of muscle contractile properties during fatigue: afferent feedback dependence. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 93(3), 209-217.
Lin, Y.-T., Kuo, C.-H., & Hwang, S. (2014). Fatigue effect on low-frequency force fluctuations and muscular oscillations during rhythmic isometric contraction. PloS one, 9(1), e85578.
Loenneke, J., Fahs, C., Wilson, J., & Bemben, M. (2011). Blood flow restriction: the metabolite/volume threshold theory. Medical hypotheses, 77(5), 748-752.
Loenneke, J. P., Kim, D., Fahs, C. A., Thiebaud, R. S., Abe, T., Larson, R. D., et al. (2015). Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle & nerve, 51(5), 713-721.
Loenneke, J. P., & Pujol, T. J. (2009). The use of occlusion training to produce muscle hypertrophy. Strength & Conditioning Journal, 31(3), 77-84.
McCall, G., Byrnes, W., Dickinson, A., Pattany, P., & Fleck, S. (1996). Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. Journal of applied physiology, 81(5), 2004-2012.
Medicine, A. C. o. S. (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and science in sports and exercise, 41(3), 687.
Miall, R., Weir, D., & Stein, J. (1986). Manual tracking of visual targets by trained monkeys. Behavioural brain research, 20(2), 185-201.
Miall, R., Weir, D., & Stein, J. (1988). Planning of movement parameters in a visuo-motor tracking task. Behavioural brain research, 27(1), 1-8.
Moore, D. R., Burgomaster, K. A., Schofield, L. M., Gibala, M. J., Sale, D. G., & Phillips, S. M. (2004). Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. European journal of applied physiology, 92(4-5), 399-406.
Moritani, T., Sherman, W. M., Shibata, M., Matsumoto, T., & Shinohara, M. (1992). Oxygen availability and motor unit activity in humans. European journal of applied physiology and occupational physiology, 64(6), 552-556.
Nakano, J., Kataoka, H., Sakamoto, J., Origuchi, T., Okita, M., & Yoshimura, T. (2009). Low‐level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats. Experimental physiology, 94(9), 1005-1015.
Negro, F., Keenan, K., & Farina, D. (2015). Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity? Journal of neural engineering, 12(3), 036008.
Nishihira, Y., Araki, H., Funase, K., Imanaka, K., Suzuki, J., & Takemiya, T. (1996). Somatosensory evoked potentials following voluntary movement during upper arm compression. Electromyography and clinical neurophysiology, 36(1), 21-28.
Owino, V., Yang, S. Y., & Goldspink, G. (2001). Age‐related loss of skeletal muscle function and the inability to express the autocrine form of insulin‐like growth factor‐1 (MGF) in response to mechanical overload. FEBS letters, 505(2), 259-263.
Patrocinio, T., Sardim, A. C., Assis, L., Fernandes, K. R., Rodrigues, N., & Renno, A. C. M. (2013). Effect of low-level laser therapy (808 nm) in skeletal muscle after resistance exercise training in rats. Photomedicine and laser surgery, 31(10), 492-498.
Patterson, S. D., Hughes, L., Warmington, S., Burr, J. F., Scott, B. R., Owens, J., et al. (2019). BLOOD FLOW RESTRICTION EXERCISE POSITION STAND: Considerations of Methodology, Application and Safety. Frontiers in physiology, 10, 533.
Pethick, J., Winter, S. L., & Burnley, M. (2015). Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man. The Journal of physiology, 593(8), 2085-2096.
Place, N., Bruton, J. D., & Westerblad, H. (2009). Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres. Clinical and Experimental Pharmacology and Physiology, 36(3), 334-339.
Ratamess, N. A., Alvar, B. A., Evetoch, T. E., Housh, T. J., Ben Kibler, W., Kraemer, W. J., et al. (2009). Progression models in resistance training for healthy adults. Medicine and science in sports and exercise, 41(3), 687-708.
Rossato, M., Dellagrana, R. A., Lanferdini, F. J., Sakugawa, R. L., Lazzari, C. D., Baroni, B. M., et al. (2016). Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue. Lasers in medical science, 31(6), 1237-1244.
Rossato, M., Dellagrana, R. A., Sakugawa, R. L., Lazzari, C. D., Baroni, B. M., & Diefenthaeler, F. (2018). Time response of photobiomodulation therapy on muscular fatigue in humans. The Journal of Strength & Conditioning Research, 32(11), 3285-3293.
Schoenfeld, B. J. (2013). Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports medicine, 43(3), 179-194.
Segal, N., Davis, M. D., & Mikesky, A. E. (2015). Efficacy of blood flow-restricted low-load resistance training for quadriceps strengthening in men at risk of symptomatic knee osteoarthritis. Geriatric orthopaedic surgery & rehabilitation, 6(3), 160-167.
Shefer, G., Barash, I., Oron, U., & Halevy, O. (2003). Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1593(2-3), 131-139.
Silvagno, F., Xia, H., & Bredt, D. S. (1996). Neuronal nitric-oxide synthase-, an alternatively spliced isoform expressed in differentiated skeletal muscle. Journal of Biological Chemistry, 271(19), 11204-11208.
Stringer, W., Wasserman, K., Casaburi, R., Porszasz, J., Maehara, K., & French, W. (1994). Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise. Journal of Applied Physiology, 76(4), 1462-1467.
Takada, S., Okita, K., Suga, T., Omokawa, M., Kadoguchi, T., Sato, T., et al. (2012). Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. Journal of applied physiology, 113(2), 199-205.
Takarada, Y., Sato, Y., & Ishii, N. (2002). Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. European journal of applied physiology, 86(4), 308-314.
Takarada, Y., Tsuruta, T., & Ishii, N. (2004). Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. The Japanese journal of physiology, 54(6), 585-592.
Toma, R. L., Oliveira, M. X., Renno, A. C. M., & Laakso, E.-L. (2018). Photobiomodulation (PBM) therapy at 904 nm mitigates effects of exercise-induced skeletal muscle fatigue in young women. Lasers in medical science, 33(6), 1197-1205.
Toma, R. L., Vassão, P. G., Assis, L., Antunes, H. K. M., & Renno, A. C. M. (2016). Low level laser therapy associated with a strength training program on muscle performance in elderly women: a randomized double blind control study. Lasers in medical science, 31(6), 1219-1229.
Vanin, A. A., Verhagen, E., Barboza, S. D., Costa, L. O. P., & Leal-Junior, E. C. P. (2018). Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers in Medical Science, 33(1), 181-214.
Vassão, P., Toma, R., Antunes, H., Tucci, H., & Renno, A. (2016). Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation. Lasers in medical science, 31(2), 275-282.
Wentzell, M. (2018). Post-operative rehabilitation of a distal biceps brachii tendon reattachment in a weightlifter: a case report. The Journal of the Canadian Chiropractic Association, 62(3), 193.
Wernbom, M., Augustsson, J., & Raastad, T. (2008). Ischemic strength training: a low‐load alternative to heavy resistance exercise? Scandinavian journal of medicine & science in sports, 18(4), 401-416.