簡易檢索 / 詳目顯示

研究生: 陳威廷
Chen, Wei-Ting
論文名稱: 生物藥理行為與化學取代基效應之理論研究
Theoretical Studies of Some Biomedical Behaviors and Chemical Substitution Effects
指導教授: 王小萍
Wang, Shao-Pin
陳淑慧
Chen, Shu-Hui
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 107
中文關鍵詞: 源始計算抗白內障吡諾克辛薑黃素去甲基化薑黃素軌域作用狄耳士-阿德爾反應放光材料三(8-羥基喹啉)鋁雙硫鍵
外文關鍵詞: ab initio calculation, anti-cataractogenesis, pirenoxine, curcumin, demethylated-curcumin, orbital interaction, Diels-Alder reaction, luminescent material, Alq3, disulfide bond
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Pirenoxine (PRX) 在抓取引發白內障的亞硒酸 (selenite) 陰離子,其生物藥理效應主要被描述為Na+ 誘導出兩陰離子間的 π-π 作用力。兩陰離子間的氫鍵作用也促使其加成物的形成。此外氫鍵也穩定了亞硒酸與curcumin (CCM) 所形成的加成物。由IR光譜其 νOH 波帶吸收強度的增強,可以證明氫鍵作用的存在。1H- 與77Se-NMR光譜則可利用CCM與亞硒酸陰離子間的酸鹼作用平衡來解釋。經由IR與NMR實驗,可證實demethylated-curcumin (DCCM) 抓取亞硒酸的能力。而這種CCM衍生物其抓取的能力,氫鍵作用扮演了主導的地位。在加成物中,CCM或其衍生物的質子轉移到亞硒酸上,其現象也可以被用來解釋IR光譜。利用量子力學研究所獲得CCM與DCCM結合位置的相關資訊,可以用來解釋實驗所觀察到的結合能力。
    將取代基高能量的 π* 軌域引入乙烯系統之中,其下拉乙烯的LUMO能量之效應,使乙烯衍生物在動力學上有利於Diels-Alder (DA) 反應。而這結論解釋了文獻所觀察到的現象:由於路易士酸的協助,丙烯醛 (acrolein) 能夠以更低的能量障礙去進行DA反應。羥基或甲氧基將會推高 π-類型的邊界軌域,這個從研究中所得到結論,在天然鍵性軌域(NBO)方法中再次被應證。所以將OMe引入到乙烯之中,導致電子轉移的逆轉 (從diene到dienophile),如同芳基 (aryl)-芳基DA環化加成中觀察到OMe增強了 π-stacking,這些現象因此而可以被理解。二硫代苯 (dithiobis-benzene;DIBH) 的衍生物作為抗HIV配體,是因為其主要由 σ*SS 鍵結軌域所構成的LUMO (一個擁有約-1.5 eV非常低能量的反鍵結軌域),在苯基片段其LUMO的混入下,更加地壓低LUMO的軌域能量。由OH所修飾的DIBH,是一個比甲基所修飾的DIBH還要更好的配體,其出乎意料的結果,可以由S原子與OH之間接近10 kcal/mol電子不定域化穩定能量的強力氫鍵加以解釋。一個雙硫片段低能量的 σ*SS,再加上每個硫上高電子不定域性的孤對電子,是對於“氧化還原敏感性”的雙硫鍵 (disulfide bond) 之成因一種很有可能的解釋。

    The biomedical effect of pirenoxine (PRX) shown by binding the cataractogenic selenite anion is mainly ascribed to Na+-induced π-π interaction between the two anions. The H-bonding between the two anions also contributes to the formation of adduct of the two anions. H-bonding is also responsible for stabilizing the adduct of selenite and curcumin (CCM). The H-bonding can be evidenced by the enhancement of the IR intensity of νOH band. The 1H- and 77Se-NMR spectra can be explained by the equilibrium of acid-base interaction between the curcumin and the selenite anion. Through IR and NMR experiments, the selenite-binding capability of the demethylated-curcumin (DCCM) can be confirmed. The H-bonding plays the dominating role in accounting for the binding capability of this curcumin derivative. Proton transfer from the CCM or its derivative to selenite in the adduct can be used to explain the IR spectra. The favoring binding site(s) for both CCM and DCCM obtained by quantum mechanic studies can explain the relative binding capabilities observed experimentally.
    The pressing-down effect, exerted by the substituents' high-lying π* orbital(s) introduced to ethylene, on the ethylene's LUMO-level enables ethylene-derivatives kinetically favored for polar Diels-Alder (DA) reactions. This conclusion explains the observations: assisted by Lewis-acids, acroleins can proceed DA reactions with even lower lower energy barriers. Hydroxyl or methoxyl group would push-up π-type frontier orbitals, a conclusion derived from studies augmented with natural bond orbital (NBO) method. Introducing OMe to ethylene leading to inverse charge transfer (from diene to the dienophile), as well as the observation that OMe enhances the π-stacking observed for aryl-aryl DA cycloadditions, can thus be understood. The derivatives of dithiobisbenzene (DIBH) employed as anti-HIV ligands because their LUMOs, composed mainly of σ*SS BO (a sigma anti-bonding with very low energy in the neighborhood of -1.5 eV), are further lowered by the phenyl's fragmental LUMOs. The OH-modified DIBH, found unexpectedly a better ligand than the methyl-modified DIBH, is explained by the strong H-bonding formed between S-atom and OH as indicated by the near 10 kcal/mol of delocalization energy. The low-lying σ*SS of the di-sulfur framework, in combination of the high electron-delocalization lone-pair on each sulfur, is a promising explanation for the “redox-sensitivity” associated with a disulfide bond.

    Abstract in Chinese..........................................................I Abstract....................................................................II Acknowledgement............................................................III Contents....................................................................IV List of Tables..............................................................VI List of Figure............................................................VIII Chapter 1 Introduction.......................................................1 Chapter 2 The Theoretical Background.........................................3 2.1 The Schrӧdinger Equation.................................................3 2.2 Separation of Nuclear Motion: Potential Surfaces.........................4 2.3 Atomic Units.............................................................7 2.4 Molecular Orbital Theory.................................................8 2.5 Basis Set Expansions....................................................11 2.6 Variational Methods and Hartree-Fock Theory.............................14 2.6.1 Closed-Shell Systems..................................................15 2.6.2 Open-Shell System.....................................................17 2.6.3 Koopmans' Theorem and Ionization Potentials...........................18 2.7 Electron Correlation Methods............................................19 2.7.1 Møller-Plesset (MP) Perturbation Theory...............................20 2.7.2 Density Functional Theory (DFT).......................................23 2.7.3 Relativistic Effect...................................................34 2.8 Localized Molecular Orbitals............................................36 2.8.1 Natural Bond Orbital (NBO)............................................37 Chapter 3 Calculation Methods and Experimental Details......................41 Chapter 4 Results and Discussion............................................43 4.1 Implications for Anti-Cataractogenesis..................................43 4.1.1 Ditopic Complexation of Selenite Anions or Calcium Cations by PRX.....45 4.1.2 H-Bonding Complexation of Selenite by CCM and DCCM....................58 4.1.3 Review on the PRX after CCM’s Studies................................74 4.2 Orbital Interaction.....................................................76 4.2.1 The π-nature of Common Substituents..................................76 4.2.2 Tuning the Emitting Energies of Alq3 Derivatives......................85 4.3 Anti-HIV Activity of Dithiobisbenzene-Derivatives: The Nature of Disulfide Bond........................................................................87 4.3.1 Levels of LUMO/LUMO Calculated for PH-R Molecules (R=Me, OH, Amide and N-amide)....................................................................87 4.3.2 The Low LUMO of DIBH and the Role of the Disulfide Bond...............88 4.3.3 HOMO of the DIBH Molecule.............................................89 4.3.4 Methylated H2S2-Derivatives...........................................89 4.3.5 The High Reactivity of DIBA-1 and DIBA-2 Ligands......................90 4.3.6 Effects of H-bonding: Relative Reactivities of DIBPH and DIBTL........90 Chapter 5 Conclusions.......................................................94 References..................................................................95 Appendix A: Corrected Binding Energies by BSSE for PRX’s adducts..........102 Appendix B: List of Acronyms...............................................103 Appendix C: List of Calculation Methods....................................107

    [1] a) C. H. Yang, K. H. Fang, W. L. Su, S. P. Wang, S. K. Su, I. W. Sun, J. Organomet. Chem. 2006, 691, 2767; b) C.-H. Yang, W.-L. Su, K.-H. Fang, S.-P. Wang, I. W. Sun, Organometallics 2006, 25, 4514; c) W. L. Su, Y. C. Yu, M. C. Tseng, S. P. Wang, W. L. Huang, Dalton Trans. 2007, 3440; d) W.-L. Su, C.-C. Wang, S.-P. Wang, J. Chin. Chem. Soc. 2012, 59, 1385; e) W. T. Chen, Y. J. Chen, C. S. Wu, J. J. Lin, W. L. Su, S. H. Chen, S. P. Wang, Inorg. Chim. Acta, DOI: 10.1016/j.ica.2013.1006.1021 (in press).
    [2] a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211; b) A. E. Reed, F. Weinhold, J. Chem. Phys. 1983, 78, 4066; c) A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736; d) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735; e) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899; f) J. E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem) 1988, 46, 41; g) F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge, UK, 2004; h) F. Weinhold, J. Comput. Chem. 2012, 33, 2363.
    [3] a) F. Weinhold, Nature 2001, 411, 539; b) V. Pophristic, L. Goodman, Nature 2001, 411, 565.
    [4] I. V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc. 2003, 125, 5973.
    [5] P. Geerlings, P. W. Ayers, A. Toro-Labbé, P. K. Chattaraj, F. De Proft, Acc. Chem. Res. 2012, 45, 683.
    [6] J. H. Liao, C. S. Chen, C. C. Hu, W. T. Chen, S. P. Wang, I. L. Lin, Y. H. Huang, M. H. Tsai, T. H. Wu, F. Y. Huang, S. H. Wu, Inorg. Chem. 2011, 50, 365.
    [7] J. H. Liaoa, Y. S. Huanga, Z. Y. Huang, W. T. Chen, S. P. Wang, M. Y. Chend, Y. C. Lina, Y. M. Hsub, T. H. Wue, F. Y. Huang, S. H. Wu, H-Bonding Complexation of Selenite by Curcumin and Demethylated Curcumin: Implication in Preventing lens crystallin form selenite damage (manuscript in preparation).
    [8] T. Esatbeyoglu, P. Huebbe, I. M. Ernst, D. Chin, A. E. Wagner, G. Rimbach, Angew. Chem. Int. Ed. 2012, 51, 5308.
    [9] a) Y. W. Shi, M. M. Shi, J. C. Huang, H. Z. Chen, M. Wang, X. D. Liu, Y. G. M, H. Xuc, B. Yangc, Chem. Commun. 2006, 1941; b) V. A. Montes, R. Pohl, J. Shinar, P. Anzenbacher, Jr., Chem. Eur. J. 2006, 12, 4523; c) M. M. Shi, J. J. Lin, Y. W. Shi, M. Ouyang, M. Wang, H. Z. Chen, Mater. Chem. Phys. 2009, 115, 841; d) J. P. Heiskanen, O. E. O. Hormi, Tetrahedron 2009, 65, 8244; e) A. Irfan, R. Cui, J. Zhang, L. Hao, Chem. Phys. 2009, 364, 39; f) A. Irfan, J. Zhang, Theor. Chem. Acc. 2009, 124, 339.
    [10] A. T. Maynard, M. Huang, W. G. Rice, D. G. Covell, Proc. Natl. Acad. Sci. USA 1998, 95, 11578.
    [11] L. Yuan, J. Liu, J. Wen, H. Zhao, Langmuir 2012, 28, 11232.
    [12] J.-H. Ryu, S. Jiwpanich, R. Chacko, S. Bickerton, S. Thayumanavan, J. Am. Chem. Soc. 2010, 132, 8246.
    [13] W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
    [14] a) E. Schrӧdinger, Ann. Physik 1926, 79, 361; b) E. C. Kemble, Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York, 1965; c) F. L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968; d) I. N. Levine, Quantum Chemistry, 6 ed., Pearson Prentice Hall, Upper Saddle River, New Jersey, 2009.
    [15] M. Born, J. R. Oppenheimer, Ann. Physik 1927, 84, 457.
    [16] W. Pauli, Z. Physik 1925, 31, 765.
    [17] a) J. C. Slater, Phys. Rev. 1929, 34, 1293; b) J. C. Slater, Phys. Rev. 1930, 35, 509.
    [18] J. C. Slater, Phys. Rev. 1930, 36, 57.
    [19] a) S. F. Boys, Proc. Roy. Soc. (London) 1950, A200, 542; b) I. Shavitt, Vol. 2, Wiley, New York, 1962, p. 1.
    [20] C. C. J. Roothaan, Rev. Mod. Phys. 1951, 23, 69.
    [21] G. G. Hall, Proc. Roy. Soc. (London) 1951, A205, 541.
    [22] a) C. C. J. Roothaan, Rev. Mod. Phys. 1960, 32, 179; b) J. S. Binkley, J. A. Polpe, P. A. Dobosh, Mol. Phys. 1974, 28, 1423.
    [23] J. A. Pople, R. K. Nesbet, J. Chem. Phys. 1954, 22, 571.
    [24] T. A. Koopmans, Physica 1934, 1, 104.
    [25] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
    [26] L. Brillouin, Actualities Sci. Ind. 1934, 71, 159.
    [27] J. A. Pople, J. S. Binkley, R. Seeger, Int. J. Quantum Chem. Symp. 1976, 10, 1.
    [28] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
    [29] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
    [30] a) E. J. Baerends, O. V. Gritsenko, J. Phys. Chem. 1997, 101, 5383; b) O. V. Gritsenko, P. R. T. Schipper, E. J. Baerends, J. Chem. Phys. 1997, 107, 5007; c) R. Stowasser, R. Hoffmann, J. Am. Chem. Soc. 1999, 121, 3414.
    [31] a) K. Kim, K. D. Jordan, J. Phys. Chem. 1994, 98, 10089; b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
    [32] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
    [33] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
    [34] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; b) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 200.
    [35] P. Pyykko, Chem. Rev. 1988, 88, 563.
    [36] E. Engel, R. M. Dreizler, Topic in Current Chemistry 1996, 181, 1.
    [37] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. V. Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA, 2003.
    [38] a) F. London, J. Phys. Radium 1937, 8, 397; b) R. McWeeny, Phys. Rev. 1962, 126, 1028; c) R. Ditchfield, Mol. Phys. 1974, 27, 789; d) K. Woliński, A. J. Sadlej, Mol. Phys. 1980, 41, 1419; e) K. Woliński, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
    [39] R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, M. Saladini, J. Mol. Struct. 2008, 892, 168.
    [40] G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, , J. R. C. M. A. Robb, V. G. Zakrzewski, J. A. Montgomery, Jr., , J. C. B. R. E. Stratmann, S. Dapprich, J. M. Millam, , K. N. K. A. D. Daniels, M. C. Strain, O. Farkas, J. Tomasi, , M. C. V. Barone, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, , J. O. S. Clifford, G. A. Petersson, P. Y. Ayala, Q. Cui, , P. S. K. Morokuma, J. J. Dannenberg, D. K. Malick, , K. R. A. D. Rabuck, J. B. Foresman, J. Cioslowski, , A. G. B. J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, , I. K. P. Piskorz, R. Gomperts, R. L. Martin, D. J. Fox, , M. A. A.-L. T. Keith, C. Y. Peng, A. Nanayakkara, M. Challacombe, , B. J. P. M. W. Gill, W. Chen, M. W. Wong, J. L. Andres, , M. H.-G. C. Gonzalez, E. S. Replogle, and J. A. Pople, , Gaussian 98, Rev. A.11, Gaussian, Inc., Pittsburgh PA, 2001.
    [41] R. Hoffman, Rev. Mod. Phys. 1988, 60, 601.
    [42] N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem. 2008, 29, 839.
    [43] a) G. Duncan, A. R. Bushell, Exp. Eye Res. 1975, 20, 223; b) J. D. Rhodes, J. Sanderson, Exp. Eye Res. 2009, 88, 226.
    [44] K. R. Hightower, R. Farnum, Exp. Eye Res. 1985, 41, 565.
    [45] a) L. L. David, T. R. Shearer, Invest. Ophthalmol. Vis. Sci. 1984, 25, 1275; b) J. M. Marcantonio, G. Duncan, H. Rink, Exp. Eye Res. 1986, 42, 617; c) J. Sanderson, J. M. Marcantonio, G. Duncan, Invest. Ophthalmol. Vis. Sci. 2000, 41.
    [46] T. R. Shearer, H. Ma, C. Fukiage, Mol. Vis. 1997, 3, 8.
    [47] Y. Sharma, C. M. Rao, M. L. Narasu, S. C. Rao, T. Somasundaram, A. Gopalakrishna, D. Balasubramanian, J. Biol. Chem. 1989, 264, 12794.
    [48] a) T. R. Shearer, M. Shih, M. Azuma, L. L. David, Exp. Eye Res. 1995, 61, 141; b) T. R. Shearer, D. B. Throneburg, M. Shih, Ophthalmic Res. 1996, 28 (Suppl 2), 109.
    [49] a) I. Ostadalova, A. Babicky, J. Obenberger, Experientia 1978, 34, 222; b) T. Hiraoka, J. I. Clark, X. Y. Li, G. M. Thurston, Exp. Eye Res. 1996, 62, 11.
    [50] J. H. Liao, C. S. Chen, T. J. Maher, C. Y. Liu, M. H. Lin, T. H. Wu, S. H. Wu, Chem. Res. Toxicol. 2009, 22, 518.
    [51] T. R. Shearer, R. S. Anderson, J. L. Britton, Curr. Eye Res. 1982, 2, 561.
    [52] S. K. Gupta, D. Trivedi, S. Srivastava, S. Joshi, N. Halder, S. D. Verma, Nutrition 2003, 19, 794.
    [53] J. Dawczynski, K. Winnefeld, E. Konigsdorffer, R. Augsten, M. Blum, J. Strobel, Klin. Monatsbl. Augenheilkd. 2006, 223, 675.
    [54] a) K. Nishizaki, K. Inoue, Folia Ophthalmol. Jpn. 1975, 26, 1087; b) T. Okamoto, Folia Ophthalmol. Jpn. 1975, 26, 1335; c) T. Yuge, H. Takeda, K. Ozasa, J. Eye 1988, 5, 1615.
    [55] H. Fujiwara, N. Tanaka, T. Suzuki, Nippon Ganka Gakkai Zasshi 1991, 95, 1071.
    [56] a) A. G. Chandorkar, M. V. Albal, P. M. Bulakh, P. K. Jain, Indian J. Ophthalmol. 1978, 26, 6; b) P. M. Bulakh, A. G. Chandorkar, J. J. Balsara, S. M. Ranade, M. V. Albal, Indian J. Ophthalmol. 1980, 28, 1; c) J. Kociecki, K. Zalecki, J. Wasiewicz-Rager, K. Pecold, Klin. Oczna 2004, 106, 778.
    [57] a) M. Ciuffi, S. Neri, S. Franchi-Micheli, P. Failli, L. Zilletti, M. R. Moncelli, R. Guidelli, Exp. Eye Res. 1999, 68, 347; b) M. Sekimoto, Y. Imanaka, N. Kitano, T. Ishizaki, O. Takahashi, BMC Health Serv. Res. 2006, 6, 92.
    [58] a) T. H. Wu, J. H. Liao, W. C. Hou, F. Y. Huang, T. J. Maher, C. C. Hu, J. Agric. Food Chem. 2006, 54, 2418; b) C. S. Chen, S. H. Wu, Y. Y. Wu, J. M. Fang, T. H. Wu, Org. Lett. 2007, 9, 2985.
    [59] a) D. T. Rosa, V. G. Young, D. Coucouvanis, Inorg. Chem. 1998, 37, 5042; b) S. Iwamoto, M. Otsuki, Y. Sasaki, A. Ikeda, J.-i. Kikuchi, Tetrahedron 2004, 60, 9841; c) C. Schmuck, D. Rupprecht, M. Junkers, T. Schrader, Chemistry 2007, 13, 6864; d) A. Senthilvelan, I. T. Ho, K. C. Chang, G. H. Lee, Y. H. Liu, W. S. Chung, Chemistry 2009, 15, 6152.
    [60] P. Hoog, C. Boldron, P. Gamez, K. Sliedregt-Bol, I. Roland, M. Pitie, R. Kiss, B. Meunier, J. Reedijk, J. Med. Chem. 2007, 50, 3148.
    [61] S. Aoki, Y. Honda, E. Kimura, J. Am. Chem. Soc. 1998, 120, 10018.
    [62] a) N. Tirkey, G. Kaur, G. Vij, K. Chopra, BMC Pharmacol. 2005, 5, 15; b) I. Rahman, S. K. Biswas, P. A. Kirkham, Biochem. Pharmacol. 2006, 72, 1439; c) V. Calabrese, T. E. Bates, C. Mancuso, C. Cornelius, B. Ventimiglia, M. T. Cambria, L. D. Renzo, A. D. Lorenzo, A. T. Dinkova-Kostova, Mol. Nutr. Food Res. 2008, 52, 1062.
    [63] a) B. B. Aggarwal, A. Kumar, A. C. Bharti, Anticancer Res. 2003, 23, 363; b) D. K. Agrawal, P. K. Mishra, Med. Res. Rev. 2010, 30, 818.
    [64] a) D. Rai, D. Yadav, J. Balzarini, E. D. Clercq, R. K. Singh, Nucleic Acids Symp. Ser. (Oxf.) 2008, 52, 599; b) I. Dairaku, Y. Han, N. Yanaka, N. Kato, Biosci. Biotechnol. Biochem. 2010, 74, 185.
    [65] B. Joe, U. J. Rao, B. R. Lokesh, Mol. Cell. Biochem. 1997, 169, 125.
    [66] K. Ono, K. Hasegawa, H. Naiki, M. Yamada, J. Neurosci. Res. 2004, 75, 742.
    [67] a) T. Ak, İ. Gülçin, Chem. Biol. Interact. 2008, 174, 27; b) N. Aftab, A. Vieira, Phytother. Res. 2010, 24, 500.
    [68] a) B. B. Aggarwal, K. B. Harikumar, Int. J. Biochem. Cell Biol. 2009, 41, 40; b) K. Bisht, K. H. Wagner, A. C. Bulmer, Toxicology 2010, 278, 88.
    [69] a) S. Awasthi, S. K. Srivatava, J. T. Piper, S. S. Singhal, M. Chaubey, Y. C. Awasthi, Am. J. Clin. Nutr. 1996, 64, 761; b) P. Suryanarayana, K. Krishnaswamy, G. B. Reddy, Mol. Vis. 2003, 9, 223; c) P. Suryanarayana, M. Saraswat, T. Mrudula, T. P. Krishna, K. Krishnaswamy, G. B. Reddy, Invest. Ophthalmol. Vis. Sci. 2005, 46, 2092; d) S. Padmaja, T. N. Raju, Indian J. Exp. Biol. 2004, 42, 601; e) T. N. Raju, C. S. Kumar, V. R. Kanth, B. V. Ramana, P. U. Reddy, P. Suryanarayana, G. B. Reddy, Indian J. Exp. Biol. 2006, 44, 733; f) R. Manikandan, R. Thiagarajan, S. Beulaja, S. Chindhu, K. Mariammal, G. Sudhandiran, M. Arumugam, Chem. Biol. Interact. 2009, 181, 202; g) R. Manikandan, R. Thiagarajan, S. Beulaja, G. Sudhandiran, M. Arumugam, Free Radic. Biol. Med. 2010, 48, 483.
    [70] J. H. Kim, S. C. Gupta, B. Park, V. R. Yadav, B. B. Aggarwal, Mol. Nutr. Food Res. 2012, 56, 454.
    [71] a) B. Lal, A. K. Kapoor, O. P. Asthana, P. K. Agrawal, R. Prasad, P. Kumar, R. C. Srimal, Phytother. Res. 1999, 13, 318; b) U. Pandya, M. K. Saini, G. F. Jin, S. Awasthi, B. F. Godley, Y. C. Awasthi, Toxicol. Lett. 2000, 115, 195; c) R. Manikandan, R. Thiagarajan, S. Beulaja, G. Sudhandiran, M. Arumugam, Curr. Eye Res. 2010, 35, 122; d) R. Manikandan, M. Beulaja, R. Thiagarajan, M. Arumugam, Mol. Vis. 2011, 17, 388; e) W. Y. Wang, Z. J. Zhang, J. Wang, H. W. Wang, Chin. Med. J. (Engl.) 2011, 124, 3527; f) Y. H. Hu, X. R. Huang, M. X. Qi, B. Y. Hou, J. Zhejiang Univ. Sci. B 2012, 13, 402; g) A. Radha, S. D. Rukhmini, S. Vilasini, P. R. Sakunthala, B. Sreedharan, M. P. Velayudhan, A. Abraham, Chem. Biol. Drug Des. 2012, 80, 887.
    [72] a) R. L. Jaffe, G. D. Smith, J. Chem. Phys. 1996, 105, 2780; b) P. Hobza, H. L. Selzle, E. Schlag, J. Phys. Chem. 1996, 100, 18790; c) S. Tsuzuki, T. Uchimaru, K. Matsumura, M. Mikami, K. Tanabe, Chem. Phys. Lett. 2000, 319, 547; d) M. O. Sinnokrot, E. F. Valeev, C. D. Sherrill, J. Am. Chem. Soc. 2002, 124, 10887; e) M. O. Sinnokrot, C. D. Sherrill, J. Phys. Chem. A 2004, 108, 10200; f) M. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 2004, 126, 7690; g) M. O. Sinnokrot, C. D. Sherrill, J. Phys. Chem. A 2006, 110, 10656; h) S. A. Arnstein, C. D. Sherrill, Phys. Chem. Chem. Phys. 2008, 10, 2646.
    [73] P. A. Kumar, P. Suryanarayana, P. Y. Reddy, G. B. Reddy, Mol. Vis. 2005, 11, 561.
    [74] C. C. Hu, J. H. Liao, K. Y. Hsu, I. L. Lin, M. H. Tsai, W. H. Wu, T. T. Wei, Y. S. Huang, S. J. Chiu, H. Y. Chen, S. H. Wu, T. H. Wu, Mol. Vis. 2011, 17, 1862.
    [75] W. R. Carper, P. G. Wahlbeck, J. H. Antony, D. Mertens, A. Dolle, P. Wasserscheid, Anal. Bioanal. Chem. 2004, 378, 1548.
    [76] M. M. Yallapua, M. Jaggi, S. C. Chauhana, Colloid Surface B 2010, 79, 113.
    [77] J. Mohan, Organic Spectroscopy: Principles and Applications, Narosa Publishing House, New Delhi, 2001.
    [78] a) W. B. d. Almeida, Can. J. Chem. 1991, 69, 2044; b) S. Melikova, D. Shchepkin, A. Koll, J. Mol. Struct. 1998, 448, 239; c) N. Rekik, M. J. Wójcik, Chem. Phys. 2010, 369, 71.
    [79] M. Borsari, E. Ferrari, R. Grandi, M. Saladini, Inorg. Chim. Acta 2002, 328, 61.
    [80] a) W. Y. Hsu, C. C. Tai, W. L. Su, C. H. Chang, S. P. Wang, I. W. Sun, Inorg. Chim. Acta 2008, 361, 1281; b) W. T. Chen, W. Y. Hsu, K. M. Yan, C. C. Tai, S. P. Wang, I. W. Sun, J. Chin. Chem. Soc. 2010, 57, 1293.
    [81] A. Mazumder, N. Neamati, S. Sunder, J. Schulz, H. Pertz, E. Eich, Y. Pommier, J. Med. Chem. 1997, 40, 3057.
    [82] L. R. Domingo, J. A. Sáez, Org. Biomol. Chem. 2009, 7, 3576.
    [83] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243.
    [84] W. Notz, F. Tanaka, C. F. Barbas, Acc. Chem. Res. 2004, 37, 580.
    [85] R. G. Parr, L. v. Szentpály, S. Liu, J. Am. Chem. Soc. 1999, 121, 1922.
    [86] R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512.
    [87] K. H. Sze, C. E. Brion, A. Katrib, B. El-Issa, Chem. Phys. 1989, 137, 369.
    [88] P. Pérez, L. R. Domingo, M. Duque-Noreña, E. Chamorro, J. Mol. Struct. (Theochem) 2009, 895.
    [89] S. E. Wheeler, A. J. McNeil, P. Müller, T. M. Swager, K. N. Houk, J. Am. Chem. Soc. 2010, 132, 3304.
    [90] P. V. Schleyer, A. J. Kos, Tetrahedron 1983, 39, 1141.

    下載圖示 校內:2016-07-29公開
    校外:2016-07-29公開
    QR CODE