簡易檢索 / 詳目顯示

研究生: 黃致華
Huang, Jhih-Hua
論文名稱: 奈米碳管力學性質之預估
Estimation of Mechanical Properties of Carbon Nanotubes
指導教授: 胡潛濱
Hwu, Chyanbin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 有限元素奈米碳管
外文關鍵詞: carbon nanotubes, finite elements
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文基於一些規範去計算碳原子的位置,以連體力學為基礎將奈米碳管視為空間構架,再以能量等效原理連結分子力學和結構力學的橋樑。在經過無因次化運算與一些假設之後,就可以利用一般的商業軟體,如ANSYS,去模擬單壁奈米碳管,進而預估其相關之力學性質,如楊氏係數、剪力模數、蒲松比、自然頻率和挫屈強度。

     This thesis bases on the theory to calculates position of the carbon atom. Then, it regards carbon nanotube as frame-like structures based on continuum mechanics and equivalent principle of energy establish linkage between molecule mechanics and structural mechanics. The purpose of this paper is to simulate single-walled carbon nanotube with commercial finite element software, for example ANSYS, through some operation and assumption. Finally, we estimate mechanics properties of single-walled carbon nanotube, such as Young’s modulus, shear modulus, Poisson’s ratio, nature frequencies and buckling strength.

    致謝 摘要 英文摘要 目錄.................................................i 表目錄...............................................iii 圖目錄...............................................iv 符號說明.............................................vi 第一章 緒論........................................1 1.1 前言........................................1 1.2 文獻回顧....................................2 第二章 奈米碳管的結構與基本特性....................4 2.1 單壁奈米碳管................................5 2.2 多壁奈米碳管................................6 2.3 凡得瓦力....................................7 2.4 奈米碳管的應用..............................8 第三章 有限元素之模擬..............................10 3.1 理論架構介紹................................10 3.1.1結構力學...............................10 3.1.2分子力學...............................12 3.2 有限元素之模擬與分析........................15 3.2.1石墨片之有限元素模擬...................16 3.2.2奈米碳管之有限元素模擬.................19 第四章 力學性質之預估..............................22 4.1 楊氏係數....................................22 4.2 剪力模數....................................24 4.3 蒲松比......................................25 4.4 自然頻率....................................26 4.4.1自然振動理論介紹.......................26 4.4.2模態分析方法與流程.....................27 4.4.3分析結果...............................28 4.5 挫屈強度....................................30 4.5.1挫屈理論介紹...........................30 4.5.2分析結果...............................31 第五章 結果討論與建議..............................32 5.1 結論........................................32 5.2 未來工作與建議..............................32 參考文獻.............................................34 附表.................................................38 附圖.................................................53 附錄一:奈米碳管製造.................................85 自述

    [1] 成會明, 奈米碳管 Carbon Nanotube, 五南圖書出版股份有限公司,2004。
    [2] Iijima,S., “Helical Microtubules of Graphitic Carbon ,”Nature, Vol. 354, pp.56-58 , 1991.
    [3] Bethune, D.S., Kiang, C.H. and Devries, M.S., “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,”Nature, Vol. 363, pp.605-607 , 1993.
    [4] Li, C. and Chou, T.W., “A structural mechanics approach for the analysis of carbon nanotubes,”Journal of Solids and Structures, Vol. 40, pp.2487-2499 , 2003.
    [5] Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,”Nature, Vol. 381, pp.678-680 , 1996.
    [6] Salvetat, J.P. and Briggs, G.A.D. and Bonard, J.M. and Bacsa, R.R. and Kulik, A.J. and Stöckli, T. and Burnham, N.A. and Forró L., “ Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes,” Phys. Rev. Lett., Vol.82, pp.944-947, 1999.
    [7] Yu, M. and Lourie, O. and Dyer, M.J. and Moloni, K. and Kelly, T.F. and Ruoff, R.S., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,”Science, Vol. 287, pp.637-640 , 2000.
    [8] Zhang, P. and Huang, P.M. and Hwang, K.C., “ The elastc modulus of single-wall carbon nanotubes:a continuum analysis incorporating interatomic potentials,” Journal of Solid and Structures, Vol.39, pp.3893-3906, 2002.
    [9] Lier, G.V. and Alsenoy, C.V. and Dron, V.V. and Geerlings, P., “Ab intitio study of the elastic properties of single-walled carbon nanotubes and grapheme,”Chemical Physics Letters, Vol. 326, pp.181-185 , 2000.
    [10] Hernande, E., Goze, C. and Bernier, P. and Rubio, A., “Elastic properties of C and composite nanotube,”Phys Rev Lett, Vol. 80, pp.4502-4505 , 1998.
    [11] Chang, T.C. and Gao, H.J., “Size-dependent elastic properties of a single-walled carbon nanotubes via a molecular mechanics model,”Physics of Solids, Vol. 51, pp.1059-1074 , 2003.
    [12] Dresselhaus, M.S., Dresselhaus, G. and Saito, R., “Physics of Carbon Nanotubes,”Carbon, Vol. 33, pp.883-891 , 1995.
    [13] Iijima, S., “Pentagons, heptagons and negative curvature in graphite microtubule growth,”Natur, Vol. 356, pp.776-780 , 1992.
    [15]Amelinckx, S. and Bernaerts, D., “A formation mechanism for catalytically grown heli-shaped graphite nanotubes,” Science., Vol.265, pp.635-645, 1994.
    [16] Lennard-Jones, J.E., “The determination of molecular fields:from the variation of the viscosity of a gas with temperature,”Proc. Roy. Soc., Vol. 106A, pp.441-453 , 1924.
    [17] Dai, H.J., Hafner, J.H. and Rinzler, A.G., et al., “A Carbon Nanotube field emission electron source,”Science, Vol. 270, pp.1179-1180 , 1996.
    [18] DeHeer, W.A., Chatelain, A. and Ugarte, D., “A Carbon Nanotube field emission electron source,”Science, Vol. 270, pp.1179-1180 , 1995.
    [19] Rinzler, A.G. and Hafner, J.H., “ Unraveling Nanotube:Field Emission from an Atomic Wire,” Science, Vol.269, pp.1550-1553, 1995.
    [20] Machida, K., Principles of Molecular Mechanics, Kodansha and John Wiley & Sons Co-publication, Tokyo, 1999.
    [21] Cornell, W.D., Cieplak, P. and Bayly, C.I., et al., “A second generation force-field for the simulation of proteins, nucleic-acids, and Organic- -molecules,”Journal of American Chemical Society, Vol. 117, pp.5179-5197 , 1995.
    [22] Yakobson, B.I., Brabec, C.J. and Bernholc, J., “Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response,”Phys Rev Lett, Vol. 76, pp.2511-2514, 1996.
    [23] Vodenitcharova, T. and Hafner, L.C., “ Effective Wall thickness of a single-wall carbon nanotube,” phy. Rev. B, Vol.68, pp.16540-165404, 2003.
    [24] Lu, J.P.,“ Elastic Properties of Carbon Nanotubes and Nanoropes,”Phy Rev Lett, Vol. 79, pp.1297-1300 , 1997.
    [25] Sanchez-Portal, D. and Artacho, E.and Soler J.M., “ Ab initio structural, elastic and vibrational properties of carbon nanotubes,” Phys. Rev. B, Vol.59, pp.12678-12688, 1999.
    [26] Clough, R.W., Penzien, J., Dynamics of Structures, 1975.
    [27] Li, C. and Chou, T.W., “Vibrational behaviors of multiwalled nanotube based nanomechanical resonators,”Appl. Phys. Lett., Vol. 84, pp.121-123 , 2004.
    [28] Chen, W.F and Lui, E.M.,Structural Stability Theory and Implementation. Elsevier Science Publishing Co. Inc, New York , 1987.
    [29] Li, C. and Chou,T.W., “Single-walled carbon nanotubes ultrahigh frequency nanomechanical resonators,”Physical Review B, Vol. 68, pp.073405-1 , 2003.
    [30] Li, C. and Chou, T.W., “Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach,”Mechanics of Solids Materials, Vol. 36, pp.1047-1055 , 2004.
    [31] 劉若梅, “一維奈米碳材合成與微結構之研究”, 國立成功大學材料科學及工程所碩士論文, 2002.
    [32] 化工產業技術知訊網http://www.chemtech.com.tw, 2005
    [33]奈米專欄http://www.chemnet.com.tw/magazine/200303/index4.htm, 2005
    [34] ANSYS 8.1 Documentation : ANSYS Element Reference

    下載圖示 校內:立即公開
    校外:2005-07-28公開
    QR CODE