簡易檢索 / 詳目顯示

研究生: 陳品穎
Chen, Pin-Ying
論文名稱: 再生器孔隙率梯度對自由活塞式史特靈引擎效能之影響分析
Effects of Porosity Gradient in Regenerators on Performance of Free-Piston Stirling Engine
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 100
中文關鍵詞: 自由活塞式史特靈引擎再生器孔隙率梯度理論模式
外文關鍵詞: Free-Piston, Stirling engine, Regenerator, Porosity, Gradient, Theoretical model
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以再生器的孔隙率梯度對自由活塞式史特靈引擎的效能之影響分析為主軸,透過建立熱力模式及動力模式,並於MATLAB軟體環境下自行編寫數值模擬運算程式,目的是為了解再生器孔隙率梯度對自由活塞式史特靈引擎效能的影響。本研究透過熱力模式求得自由活塞式史特靈引擎內部工作流體的壓力、溫度與質量的變化;同時利用動力模式推算移氣器與動力活塞的位移與速度的變化。由於自由活塞式史特靈引擎的運作區間固定且操作範圍小,各項參數之間的關係緊密且複雜,本研究亦針對溫度、壓力、移氣器及動力活塞的質量與彈簧常數等對自由活塞式史特靈引擎的效能的影響作探討。而透過將再生器分作多段作計算,可以降低計算的誤差,且有利於調整再生器孔隙率梯度,而孔隙率梯度的設計,應參考再生器內部各段工作流體的密度變化,以達自由活塞式史特靈引擎的最佳效能。

    This study focuses on the effect of porosity gradient of the regenerators on the performance of the free-piston Stirling engine. The purpose of this study is to analysis the porosity gradient of the regenerators through the self-developed numerical simulation program under MATLAB software environment, which combined the theoretical and dynamic model. The changes in the internal pressure of working fluid, temperatures of working fluid and mass of working fluid in separated chambers of a free-piston Stirling engine were calculated by using thermodynamic module. At the same time, the displacement and velocity changes of the displacer and the power piston are estimated by using the dynamic module. Because of the free-piston Stirling engine can only operate within a narrow and specific range, the relationships between the parameters are close and complicated. The adjustment of the porosity gradient of the regenerator can be achieved by dividing multiple sections in regenerator, and it also performs the benefit of calculation error reduction. The porosity gradient should refer to the density changes of the working fluid inside the regenerators in order to reach the best performance of the free-piston Stirling engine.

    摘要 I 目錄 XIV 表目錄 XVIII 圖目錄 XIX 符號索引 XXI 第一章 前言 1 1.1 研究背景與動機 1 1.2 自由活塞式史特靈引擎 2 1.2.1 引擎簡介 2 1.2.2 引擎工作原理 5 1.3 研究目的 6 1.4 論文架構 8 第二章 理論模式 9 2.1 機械構型 9 2.2 基本假設 9 2.3 動力模式 10 2.3.1 位移及速度 10 2.3.2 長度與體積 14 2.4 熱力模式 15 2.4.1 各腔室內部工作流體溫度 16 2.4.2 再生器內孔質性材料的溫度 22 2.4.3 各腔室內工作流體的壓力 26 2.4.4 壓力損失 26 2.4.5 孔隙率與孔質性材料熱傳面積 29 2.4.6 質量 31 2.4.7 熱對流係數 32 2.4.8 動態黏度與氣體導熱係數 35 2.4.9 輸出功與熱效率 36 第三章 原型機製作 38 3.1 機構選擇 38 3.1.1 鐘擺式自由活塞式史特靈引擎 38 3.1.2 混和式自由活塞式史特靈引擎 38 3.1.3 隔膜式自由活塞式史特靈引擎 39 3.1.4 雙聯式自由活塞式史特靈引擎 39 3.1.5 雙動式自由活塞式史特靈引擎 39 3.1.6 單動式自由活塞式史特靈引擎 39 3.2 零件設計 40 3.2.1 移氣器 40 3.2.2 動力活塞 41 3.2.3 加熱頭 41 3.2.4 汽缸 41 3.2.5 平面彈簧 42 3.2.6 水冷套件 42 3.2.7 再生器 42 3.2.8 外殼及底盤 43 3.2.9 陶瓷加熱器 43 3.3 引擎組裝及測試 44 第四章 結果與討論 45 4.1 模擬條件對模擬結果之影響 45 4.1.1 時間步階對模擬結果的影響 45 4.1.2 再生器分段數量對模擬結果的影響 46 4.2 基準組模擬結果 46 4.2.1 基準組移氣器及動力活塞位移量及體積變化 47 4.2.2 基準組各腔室工作流體溫度變化 48 4.2.3 基準組各腔室質量變化 48 4.3 引擎操作參數分析 48 4.3.1 初始溫度對引擎輸出功率之影響 48 4.3.2 質量對引擎輸出功率的影響 50 4.3.3 充填壓力對引擎輸出功率的影響 51 4.3.4 動力活塞所搭配之彈簧常數對引擎頻率的影響 52 4.3.5 移氣器所搭配之彈簧常數對引擎頻率的影響 53 4.3.6 孔隙率對引擎輸出功率的影響 53 4.4 孔隙率梯度對引擎輸出功率的影響 54 4.5 平衡與非平衡模式 58 第五章 結論 60 參考文獻 62

    [1] 經濟部能源局109年台灣發電概況網頁,發電概況(2021年12月24日)。檢自https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=14437(Jun. 1,2022.)
    [2] Organ, A.J., Thermodynamics and gas dynamics of the Stirling cycle machine, New York:Cambridge University Press, 1992.
    [3] Beale, W.T., Stirling cycle type thermal device, US Patents: US3552120A, 1969.
    [4] Lyn, B., "A technical introduction to free-piston Stirling cycle machines: Engines, coolers, and heat pumps," technical papers, Sunpower, Inc, 1993.
    [5] Benvenuto, G., De Monte, F., and Farina, F. "Dynamic behaviour prediction of free-piston Stirling engines." in IEEE Transactions on 25th Intersociety Energy Conversion Engineering Conference (IECEC-90), Reno, Nevada, USA, Vol. 5, pp. 346-351, 1990.
    [6] Schreiber, J G. "RE-1000 free-piston Stirling engine update." National Aeronautics and Space Administration Report, United States. 1985.
    [7] Almendinger, A.D., Anderson, T.S., Braun, A., and Zbehaviorerull, W.J., Free piston engine control system, US Patent:US2583115A, 1994.
    [8] Johansen, T.A., Egeland, O., Johannessen, E.A., and Kvamsdal, R., "Free-piston diesel engine timing and control-toward electronic cam-and crankshaft," in IEEE Transactions on Control Systems Technology, Vol. 10, pp. 177-190, 2002. DOI: 10.1109/87.987063.
    [9] 林昱廷, 自由活塞式史特靈引擎之動態模擬與製作, 國立成功大學航空太空工程學系碩士學位論文, 2011.
    [10] 莊靜雯, 自由活塞式史特靈引擎之理論模擬與最佳化分析, 國立成功大學航空太空工程學系碩士學位論文, 2012.
    [11] 郭俊佑, 自由活塞式史特靈引擎之設計與分析, 國立成功大學航空太空工程學系碩士學位論文, 2013.
    [12] 黃上庭, 結合自由活塞式史特靈引擎與線性發電機之理論模式與設計, 國立成功大學航空太空工程學系碩士學位論文, 2014.
    [13] Jian, M. and Hong, G., "Startup mechanism and power distribution of free piston Stirling engine," Energy, Vol. 123, pp. 655-663, 2017.
    [14] 謝坤植, 線性交流發電機與自由活塞式史特靈引擎整合系統之動力分析, 國立成功大學航空太空工程學系碩士學位論文, 2018.
    [15] Tavakolpour-Saleh, A., Zare, S., and Bahreman, H., "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied energy, Vol. 199, pp. 400-415, 2017.
    [16] Zhu, S., Yu, G., O, J., Xu, T., Wu, Z., Wei, D., and Luo, E., "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied energy, Vol. 226, pp. 522-533, 2018.
    [17] Qiu, S., Gao, Y., Rinker, G., and Yanaga, K., "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied energy, Vol. 235, pp. 987-1000, 2019.
    [18] Ye,W., Wang, X., and Liu, Y., "Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine," Energy, Vol. 194, 116912, 2020.
    [19] Walker, G. and Senft, J.R., "Free Piston Stirling Engines," Lecture Notes in Engineering, 1985.
    [20] Costa, S.-C., Tutar, M., Barreno, I., Esnaola, J.-A., Barrutia, H., García, D., González, M.-A., and Prieto, J.-I., "Experimental and numerical flow investigation of Stirling engine regenerator," Energy, Vol. 72, pp. 800-812, 2014.
    [21] Kim, B.G., Park, S., Koo, B.-G., and Park, S., "Effects of regenerator structure on performance of free piston stirling engine (FPSE)," Journal of Mechanical Science and Technology, Vol. 32, pp. 4473-4484, 2018.
    [22] Majid, A. and Majid, M., "Experimental and numerical study of porosity gradient in a Stirling engine regenerator," SAE Technical Paper, 2017.
    [23] Garg, S.K., Premachandran, B., Singh, M., Sachdev, S., and Sadana, M., "Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler," Thermal Science and Engineering Progress, Vol. 15, 100442, 2020.
    [24] 林昱廷, 利用類神經網路訓練與可變步階簡易共軛梯度法進行史特靈引擎最佳化設計" 國立成功大學航空太空工程學系博士學位論文, 2021.
    [25] Urieli, I. and Berchowitz, D.M., Stirling cycle engine analysis, England: Taylor & Francis, 1984.
    [26] 楊翰勳, 熱延遲式史特靈引擎之理論分析與製作, 國立成功大學航空太空工程學系碩士學位論文, 2011.
    [27] 馮典樂, 雙動四汽缸史特靈引擎之理論分析與設計, 國立成功大學航空太空工程學系碩士學位論文, 2017.
    [28] Cheng, C.-H. and Lin, Y.-T., "Computational Optimization of Free-Piston Stirling Engine by Variable-Step Simplified Conjugate Gradient Method with Compatible Strategies," Energies, Vol. 15, 3569, 2022.
    [29] 林丕靜,數值分析,儒林,臺灣,2005.
    [30] Yang, H.-S. and Cheng, C.-H., "Development of a beta-type Stirling engine with rhombic-drive mechanism using a modified non-ideal adiabatic model," Applied energy, Vol. 200, pp. 62-72, 2017.
    [31] Bejan, A., Convection heat transfer, Hoboken, New Jersey: John Wiley & Sons, Inc., 2013.
    [32] Kakaç, S., Shah, R.K., and Aung, W., Handbook of single-phase convective heat transfer, Canada: John Wiley & Sons, Inc., 1987.
    [33] Ackermann, R.A., Cryogenic regenerative heat exchangers, New York:Plenum Press, 1997.
    [34] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., Incropera's Fundamentals of Heat and Mass Transfer, Hoboken, New Jersey: Wiley, 2017.
    [35] Persoons, T., Balgazin, K., Brown, K., and Murray, D.B., "Scaling of convective heat transfer enhancement due to flow pulsation in an axisymmetric impinging jet," Journal of heat transfer, Vol. 135, 2013.
    [36] Winterton, R.H., "Where did the Dittus and Boelter equation come from?," International journal of heat and mass transfer, Vol. 41, pp. 809-810, 1998.
    [37] Barron, R.F. and Gregory F, N., Cryogenic heat transfer, United State: Taylor & Francis Ltd, 2017.
    [38] Kuehl, H.. “Numerically efficient modelling of non-ideal gases and their transport properties in Stirling cycle simulation”. Transactions on International Statistical Ecology Conference, Seattle, Washington, USA, 2016.
    [39] 孫偉倫, 自由活塞式史特靈引擎之平面彈簧最佳化設計. 國立成功大學航空太空工程學系碩士學位論文, 2021.
    [40] Schreiber, J.G., Geng,S.M., and Lorenz, G.V., "RE-1000 free-piston Stirling engine sensitivity test results," National Aeronautics and Space Administration Report, United States. 1986.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE