簡易檢索 / 詳目顯示

研究生: 謝勤毅
Hsieh, Chin-I
論文名稱: 生物界面活性劑表面素重複發酵之生物反應器設計與操作策略
Bioreactor design and operation strategies for repeated surfactin fermentation
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 82
中文關鍵詞: 改良式生物反應器活性碳固定化細胞乳膠共聚物表面素脂胜肽生物界面活性劑
外文關鍵詞: polyurethane-polyurea copolymer, bioreactor design, cell immobilization, surfactin, lipopeptide, activated carbon, biosurfactant
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用Bacillus subtilis ATCC 21332進行生物界面活性劑表面素(surfactin)重複操作生產潛力之評估。其所生產出之脂胜肽類生物界面活性劑-表面素具有優越之表面活性,為目前最具效果之生物界面活性劑之一,並有令人期待之商業應用價值,但是由於其生產價格偏高,影響實際應用之可行性。有鑑於此,本實驗室致力於發展更有效率且更經濟之表面素醱酵技術,以降低其商業化應用之門檻。
    本實驗室於先前的研究已經由反應器的改良以及固體載體的使用,在批次發酵上得到理想的結果。目前致力於進一步將生產流程朝向重複操作邁進。本研究首先採用的是固定化細胞生產的方式進行重複批次生產實驗。結果顯示,採用添加活性炭載體之乳膠共聚物(polyurethane- polyurea copolymer)固定化菌株生產surfactin,可生產約1,340 mg/L之表面素,且固定化顆粒方便於重複批次之操作。此外,以設置外接循環式活性炭卡匣系統之改良式生物反應器進行懸浮菌重複操作培養時,若採用再接種(re-inoculation)之策略,其前兩次重複操作皆可得優異的表面素產量,其表面素濃度可達6000 mg/L。

    Bacillus subtilis ATCC 21332 was used to produce surfactin via repeated operations. Surfactin, a lipopeptide biosurfactant, is recognized as one of the most effective biosurfactant available and possesses promising commercial applications. This motivated us to develop viable fermentation technology to produce surfactin in a more efficient way in order to lower the high production cost. In our recent studies, excellent surfactin producing performance was achieved in batch fermentation from innovative bioreactor design and addition of solid carrier as stimulator for surfactin production. In the present study, strategies enabling repeated operation for surfactin production were developed. The first attempt was using immobilized cell systems. Of the immobilized-cell system examined, PU (polyurethane- polyurea copolymer) immobilized cells supplemented with activated carbon resulted in the best performance with a surfactin concentration of 1,340 mg/L, and the particles were easy to be operated repeatedly. On the other hand, repeated operation with suspended-cell system was also attempted using innovative bioreactor design, in which an outer circulation activated carbon cassette system was equipped. This bioreactor setup allowed production of a high surfactin concentration of 6000 mg/L in the first two repeated batches.

    Contents Acknowledgement……………………………………………………………..i Abstract (Chinese)……………………………………………………………Ⅰ Abstract (English)………………………………………………………….....II Contents………………………………………………………………………III List of Figures……………………………………………………………….VI List of Tables………………………………………………………………...IX Notations……………………………………………………………………...X Chapter 1 Introduction………………………………………………………...1 1.1 Motivation and purpose………………………………………………1 1.2 Outline………………………………………………………………..2 Chapter 2 Literature review…………………………………………………...5 2.1 Surfactants……………………………………………………………5 2.2 Biosurfactants………………………………………………………...9 2.3 Surfactin……………………………………………………………..17 2.4 Characterizations of surfactin……………………………………….19 2.4.1 Intrinsic characteristics……………………………………….19 2.4.2 Foaming property……………………………………………..19 2.4.3 Surface activity and hemolytic activity……………………....20 2.4.4 Activity of oil displacement…………………………………..21 2.4.5 Hydrophobicity……………………………………………….22 2.4.6 Surface mobility………………………………………………22 2.4.7 Membrane solubilization……………………………………..22 2.5 Surfactin production and purification……………………………….24 2.5.1 Medium compositions and fermentative conditions………….24 2.5.2 Bioreactor designs……………………………………………27 Chapter 3 Materials and Methods…………………………………………...32 3.1 Chemicals and materials…………………………………………….32 3.2 Equipments………………………………………………………….34 3.3 Microorganisms, medium and cultivation…………………………..37 3.4 Surfactin production with immobilization cells (flask tests)….…….38 3.5 Fermentor experiments……………………………………………...39 3.5.1 Bioreactor design……………………………………………..39 3.5.2 Fermentation conditions for surfactin production……………40 3.5.3 Solid carrier…………………………………………………..40 3.5.4 Fed-batch surfactin fermentation……………………………..41 3.5.5 Repeated batch surfactin fermentation……………………….41 3.6 Analytical methods and surfactin purification………………………44 3.6.1 Determination of cell concentration………………………….44 3.6.2 Measurement of ammonium-nitrogen concentration…………44 3.6.3 Measurement of glucose concentration………………………44 3.6.4 Surfactin analysis with HPLC………………………………..45 3.6.5 Isolation and purification of surfactin………………………...46 Chapter 4 Repeated batch assessment of surfactin production using immobilized-cell system………………………………………….47 4.1 Introduction…..………………………………………………………47 4.2 Surfactin production with original PU immobilized cells……………48 4.3 Supplemental materials………………………………………………49 4.4 Effect of cell loading in immobilized cells on surfactin production…………………………………………51 4.5 Repeated batch operation using immobilized cells…………………..53 Chapter 5 Bioreactor design and operation strategies for repeated surfactin fermentation…………………………………..54 5.1 Introduction……………………………………………………..........54 5.2 Surfactin fermentation using original bioreactor…………………….54 5.3 Surfactin fermentation using the modified bioreactor………………..61 5.3.1 Modification of bioreactor and batch fermentation tests…………………………………………...61 5.3.2 Fill-and-draw operation with modified bioreactor………......62 5.4 Effect of surfactin concentration on surfactin fermentation……….....66 5.5 Effect of ammonia-nitrogen concentration on surfactin fermentation……………………………………………..69 5.6 Repeated operation with seed culture re-inoculation………………...71 Chapter 6 Conclusions……………………………………………………….73 References………………………………………………………...................74 List of Figures Figure 1.1 A flowchart describing the research scope in this study…………..4 Figure 2.1 Basic structure of a surfactant……………………………………..5 Figure 2.2 Nonionic surfactant polyoxyethylene (20) sorbitan monooleate (Tween 80 or T80) ………………………...………….6 Figure 2.3 Sodium dioctylsulphosuccinate…………………………………...6 Figure 2.4 Hexadecylsulphonic acid………………………………………….7 Figure 2.5 Dodecylamine hydrochloride……………………………………...7 Figure 2.6 Dodecylpyridinium chloride……………………………………....7 Figure 2.7 Zwitterionic form of N-dodecyl-N,N-dimethyl betaine…………...7 Figure 2.8 Structure of surfactin………………………………………………8 Figure 2.9 Relationship between surfactant concentration and critical micelle concentration…………………………………………….9 Figure 2.10 Rhamnolipids from Pseudomonas aeruginos..............................11 Figure 2.11 Sophorose lipid from Torulopsis apicola.....................................11 Figure 2.12 Surfactin from Bacillus subtilis………………………………...12 Figure 2.13 Lichenysin from Bacillus licheniformis………………………...12 Figure 2.14 Iturin A from Bacillus subtilis…………………………………..12 Figure 2.15 Biosurfactant produced by Corynebacterium lepus, where R1, R2 = alkyl, X = hydrogen, ethylamine, inositol……...13 Figure 2.16 Emulsan from Acinetobacter calcoaceticus…………………….13 Figure 2.17 Structure of surfactin; n = 7, 8, or 9…………………………….18 Figure 2.18 A diagram of surfactin production regulated by two quorum sensing systems in Bacillus subtilis…………….18 Figure 2.19 Apparatus used in semi-batch foam fractionation………………29 Figure 2.20 Apparatus used for the simultaneous growth and collection of the culture foam…………………………………..29 Figure 2.21 Scheme of airlift bioreactor…………………………………….30 Figure 2.22 Schematic description of the modified bioreactor module……..30 Figure 3.1 Immobilized Bacillus subtilis ATCC 21332 cells beads………...39 Figure 3.2 The photograph of the modified bioreactor system……………...42 Figure 3.3 Cylindrical activated carbon with a diameter of 3-4 mm and a height of 9 mm…………………………………...43 Figure 3.4 The CAC was an indispensable factor in this research…………..43 Figure 3.5 Calibration line of glucose concentration………………………..45 Figure 3.6 Calibration line of surfactin concentration………………………46 Figure 4.1 Surfactin production with original PU immobilized cells……….48 Figure 4.2 Surfactin production in PU immobilized cells supplemented with chitosan, sugar and AC powder as additives……………………………………………...50 Figure 4.3 Surfactin production with PU immobilized cells supplemented with different amount of activated carbon powder…………………………………………………...51 Figure 4.4 Effect of cell loading in PU immobilized cells on surfactin production…………………………………….52 Figure 4.5 Repeated operation of surfactin production by PU immobilized cells supplemented with activated carbon carriers…………………………………………………...53 Figure 5.1 Surfactin concentration and cell-growth profile from original bioreactor design with carrier-supplemented strategy……………………………………56 Figure 5.2 Fed-batch fermentation for surfactin production………………...57 Figure 5.3 Cumulative surfactin production by fed-batch fermentation…….58 Figure 5.4 Surfactin fermentation with fill-and-draw operation…………….60 Figure 5.5 Batch surfactin fermentation with modified bioreactor………….63 Figure 5.6 Surfactin production with fill and draw operation using the modified bioreactor……………………………………65 Figure 5.7 Test for finding damage caused by high residual surfactin concentration….................................................67 Figure 5.8 Repeated operation eliminating product inhibition………………68 Figure 5.9 Repeated operation with reduced ammonia-nitrogen concentration…………………………………………………….70 Figure 5.10 Repeated surfactin fermentation using the seed culture re-inoculation strategy……………………………72 List of Tables Table 2.1 Microorganisms and corresponding biosurfactants……………….16 Table 2.2 Comparison of surfactin producing performance between this work and comparable studies…………………………………31 Table 3.1 The composition of LB medium………………………………….37 Table 3.2 The composition of MSI medium………………………………...37 Table 5.1 Comparison of surfactin production performance between the present study (batch fermentation) and literature……………………………………………………..64

    References

    Abu-Ruwaida, A.S., Banat, I.M., Haditirto, S., and Khamis, A. Nutritional requirements and growth characteristics of a biosurfactant-producing Rhodococcus bacterium. World Journal of Microbiology & Biotechnology, 7, 53-61, 1991.
    Ahimou, F., Jacques, P., and Deleu, M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27, 749-754, 2000.
    Akihiro, O., Takashi, A., and Makoto, S. Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. Journal of Fermentation and Bioengineering, 80: 5, 517-519, 1995b.
    Akihiro, O., Takashi, A., and Makoto, S. Production of a lipopeptide antibiotic, Surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnology and Bioengineering, 47, 209-214, 1995a.
    Arima, K., Kakinuma, A., and Tamura, G. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochemical Biophysical Research Communications, 31, 488-494, 1968.
    Atlas, R.M. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews, 45, 180-209, 1981.
    Attwood, D. and Florence, A.T. Surfactant systems: Their chemistry, pharmacy and biology. Chapman and Hall, New York, pp. 1-39, 1983.
    Bailey, K. and Ollins, N. Biosurfactants for cosmetic applications. International Journal of Cosmetic Science, 13, 61-64, 1986.
    Banat, I.M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 51, 1-12, 1995.
    Banat, I.M., Makkar, R.S., and Cameotra, S.S. Potential applications of microbial surfactants. Applied Microbiology Biotechnology, 53, 495-508, 2000.
    Barros FFC, de Quadros CP, Marstica MR, Patore GM. Surfactin: Chemical, technological and functional properties for food applications. QUIMICA NOVA, 30 (2), 409-414, 2007.
    Becher, P. Emulsions, Theory and Practice. second ed. Reinhold Publishing, New York, pp. 1-15, 1965.
    Biermann, M., Lange, F., Piorr, R., Ploog, U., Rutzen, H., Schindler, J., Schmidt, R. In: Falbe, J. (Ed.), Surfactants in Consumer Products, Theory, Technology and Application. Springer-Verlag, Heidelberg, pp. 1-10, 1987.
    Carmen, C., Jose, A. T., Francisco, J. A., and Antonio, O. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica Biophysica Acta., 1611, 91-97, 2003.
    Chien-Yen Chen, Simon C. Baker and Richard C. Darton. Batch production of biosurfactant with foam fractionation. Chem Technol Biotechnol, 81, 1923-1931, 2006
    Cooper, D.G. Biosurfactants. Microbiological Sciences, 3, pp. 145-149, 1986.
    Cooper, D.G. and Goldenberg, B.G. Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53, 224-229, 1987.
    Cooper, D.G., MacDonald, C.R., Duff, J. B., and Kosaric, N. Enhanced production of surfactant from Bacillus subtilis by continuous product removal and metal cation addition. Applied and Environmental Microbiology, 42, 408-412, 1981.
    Davis, D.A., Lynch, H.C., and Varley, J. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microbial Technology, 28, 346-354, 2001.
    Davis, D.A., Lynch, H.C., and Varley, J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microbial Technology 25, 322-329, 1999.
    Deleu, M., Razafindralambo, H., Popineau, Y., Jacques, P., Thonart, P., and Paquot, M. Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152, 3-10, 1999.
    Desai, J.D. and Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular biology Reviews, 61, 47-64, 1997.
    Drouin, C.M. and Cooper, D.G. Biosurfactants and aqueous two-phase fermentation. Biotechnology and Bioengineering, 40, 86-90, 1992.
    Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M. Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochemica et Biophysica Acta-General Subjects, 1726 (1), 87-95 2005.
    Fiechter, A. Biosurfactants: moving towards industrial application. Trends in Biotechnogy, 10, 208-217, 1992.
    Georgiou, G., Lin, S., and Sharma, M. M. Surface active compounds from microorganisms. Bio/Tech., 10, 60-65, 1992.
    Gholamreza, D.N., Mohammadreza H., and Bibi, S.F.B. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. The Journal of Microbiology, 43: 3, 272-276, 2005.
    Grangemard, I., Wallach, J., and Maget-dana, R. Peypoux, F. A more efficient cation chelator than surfactin. Applied Biochemistry Biotechnology, 90, 199-210, 2001.
    Grau, A., Juan C. Gomez Fernandez, Peypoux, F., and Ortiz, A. A study on the interactions of surfactin with phospholipid vesicles. Biochimica et Biophysica Acta, 1418, 307-319, 1999.
    Guerra-Santos, L., Kappeli, O., and Fiechter, A. Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Applied Microbiology and Biotechnology, 24, 443-448, 1986.
    Guerra-Santos, L., Kappeli, O., and Fiechter, A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Applied and Environmental Microbiology, 48, 301-305, 1984.
    Haferburg, D., Hommel, R., Claus, R., and Kleber, H. Extracellular microbial lipids as biosurfactants. Adv. Biochem. Engng/Biotech., 33, 53-93, 1986.
    Heerklotz H, Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. European Biophysics Journal with Biophysics Letters, 36 (4-5), 305-314, 2007.
    Hommel, R.K. and Huse, K. Regulation of sophorose lipid production by Candida (Torulopsis) apicola. Biotechnology Letters, 15, 853-858, 1993.
    Kakinuma, A., Ouchida, A., Shima, T., Sugino, H., Isono, M., Tamura, G., and Arima, K. Confirmation of the structure of surfactin by mass spectrometry. Agricultural and Biological Chemistry, 33, 1669-1671, 1969.
    Kim, H.S., Yoon, B.D., Choung, D.H., Oh, H.M., Katsuragi, T., and Tani, Y. Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY 16. Applied Microbiology and Biotechnology, 52, 713-721, 1999.
    Kim, H.S., Yoon, B.D., Lee, C.H., Suh, H.H., Oh, H.M., Katsuragy, T., and Tani, Y. Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. Journal of Fermentation and Engineering, 84, 41-46, 1997.
    Kim SY, Kim JY, Kim SH, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CE, Hong S. Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Letters, 581 (5), 865-871, 2007.
    Kinsinger, R.F., Shirk, M.C., and Fall, R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. Journal of Bacteriology, 5627-5631, 2003.
    Kitamoto, D., Yanagishita, H., Shinbo, T., Nakane, T., Kamisava, C., and Nakahara, T. Surface-active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida Antarctica. Journal of Biotechnology, 29, 91-96, 1993.
    Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P., and Ziessow, D. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. Journal of Colloid and Interface Science, 204, 1-8, 1998.
    Lang, S. Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid & Interface Science, 7, 12-20, 2002.
    Lee, B.S. and Kim, E.K. Lipopeptide production from Bacillus sp. GB16 using a novel oxygenation method. Enzyme and Microbial Technology, 35, 639-647, 2004.
    Lin, S.C. Biosurfactant: recent advances. Journal of Chemical Technology and Biotechnology, 63, 109-120, 1996.
    Lin, S.C., Carswell, K.S., Sharma, M.M., and Georgiou, G. Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Applied Microbiology and Biotechnology, 41, 281-285, 1994.
    Lin, S.C., Sharma, M.M., and Georgiou, G. Production and deactivation of biosurfactant by Bacillus licheniformis JF-2. Biotechnology Progress, 9, 138-145, 1993.
    Liu, X.H., Huang, W.M., and Wang E.K. An electrochemical study on the interaction of surfactin with a supported bilayer lipid membrane on a glassy carbon electrode. Journal of Electroanalytical Chemistry, 577, 349-354, 2005.
    Magnuson, R., Solomon, J., and Grossman, A.D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Ceil, 77, 207-216, 1994.
    Maier, R.M. and Soberon-Chavez, G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 54, 625-633, 2000.
    Masaaki, M., Yoshihiko, H., and Tadayuki, I. A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica Biophysica Acta., 1488, 211-218, 2000.


    Mukherjee, A.K. and Das, K. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiology Ecology, 54, 479-489, 2005.
    Mulligan, C.N. and Gibbs, B.F. Factors influencing the economics of biosurfactants. In: Kosaric, N. (Ed.), Biosurfactants, Production, Properties, Applications. Marcel Dekker, New York, pp. 329-371, 1993.
    Mulligan, C.N. Environmental applications for biosurfactants. Environmental Pollution, 133, 183-198, 2005.
    Nicolas, J.P. Molecular dynamics simulation of surfactin molecules at the water-hexane interface. Biophysical Journal, 85, 1377-1391, 2003.
    Nitschke M. and Pastore G.M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology, 97, 336-341, 2006.
    Noah, K.S., Fox, S.L., Bruhn, D.F., Thompson, D.N., and Bala, G.A. Development of continuous surfactin production from potato process effluent by Bacillus subtilis in an airlift reactor. Applied Biochemistry and Biotechnology, 98-100, 803-813, 2002.
    Palejwala, S. and Desai, J.D. Production of an extracellular emulsifier by a Gram negative bacterium. Biotechnology Letters, 11, 115-118, 1989.
    Passeri, A. Marine biosurfactants: Ⅳ. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Applied Microbiology and Biotechnology, 37, 281-286, 1992.
    Razafindralambo, H., Popineau, Y., Deleu, M., Hbid, C., Jacques, P., Thonart, P., and Paquot, M. Foaming properties of lipopeptides produced by Bacillus subtilis: Effect of lipid and peptide structural attributes. Journal of Agricultural Food Chemistry, 46, 911-916, 1998.
    Razafindralambo, H., Thonart, P., and Paquot, M. Dynamic and equilibrium surface tensions of surfactin aqueous solutions. Journal of surfactants and detergents, 7: 1, 41-46, 2004.
    Rosenberg, E. Microbial surfactants. Critical Reviews in Biotechnology, 3, 109-132, 1986.
    Rosen, M.J. and Goldsmith, H.A. Systematic analysis of surface active agents. Second ed. Wiley, New York, pp. 5-36, 1972.
    Samuel, D., Magali, D., Katherine, N., Bernard, W., Philippe, T., and Michel P. Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochimica et Biophysica Acta, 1726, 87-95, 2005.
    Sandrin, C., Peypoux, F., and Michel, F. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnology and Applied Biochemistry, 12, 370-375, 1990.
    Sen, R. and Swaminathan, T. Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochemistry, 40, 2953-2958, 2005.
    Sen, R. and Swaminathan, T. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochemical Engineering Journal, 21, 141–148, 2004.
    Sullivan, E.R. Molecular genetics of biosurfactant production. Current Opinion in Biotechnology, 9, 263-269, 1998.
    Takahashi T, Ohno O, Ikeda Y, Sawa R, Homma Y, Igarashi M, Umezawa K. Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. Journal of Antibiotics, 59 (1), 35-43, 2006.
    Thimon, L., Peypoux, F., Maget-Dana, R., Roux, B., and Michel, G. Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis. Biotechnology and Applied Biochemistry, 16, 144-151, 1992.
    Thompson, D.N., Fox, S.L., and Bala, G.A. Biosurfactants from potato process effluents. Applied Biochemistry and Biotechnology, 84-86, 917-930, 2000.
    Thompson, D.N., Fox, S.L., and Bala, G.A. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis. Applied Biochemistry and Biotechnology, 91-93, 487-501, 2001.
    Wei, Y.H. and Chu, I.M. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme and Microbial Technology, 22, 724-728, 1998.
    Wei, Y.H. and Chu, I.M. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnology Letters, 24, 479-482, 2002.
    Wei, Y.H., Wang, L.F., and Chang, J.S. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnology Progress, 20, 979-983, 2004.
    Wei, Y.H., Wang, L.F., Chang, J.S., and Kung, S.S. Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. Journal of Bioscience and Bioengineering, 96, 174-178, 2003.
    Yeh, M.S., Wei, Y.H., Chang, J.S. Enhanced production of surfactin from Bacillus subtilis by Addition of Solid Carriers. Biotechnology Progress, 21, 1329-1334, 2005.
    Yeh, M.S., Wei, Y.H., Chang, J.S. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 41, 1799-1805, 2006.
    Yeh, M.S., PhD dissertation, 2006.
    Zhang, J., Alexander, G., Richard, A.G., Alfred, L.A., and David, K. Incorporation of 2-hydroxy fatty acids by Acinetobacter calcoaceticus RAG-1 to tailor emulsan structure. International Journal of Biological Macromolecules, 20, 9-21, 1997.

    下載圖示 校內:2012-07-11公開
    校外:2012-07-11公開
    QR CODE