研究生: |
莊証喨 Chuang, Cheng-Liang |
---|---|
論文名稱: |
電化學泵氫氣回收與純化之性能評估 Performance evaluation on an electrochemical hydrogen pump for hydrogen recovery and purification |
指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 氫能 、氫氣回收 、氫氣純化 、電化學泵 |
外文關鍵詞: | Hydrogen energy, Hydrogen recovery, Hydrogen purification, Electrochemical hydrogen pump |
相關次數: | 點閱:17 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,氫能技術的發展與燃料電池的應用逐漸受到產業界關注,而其中氫氣的來源更是此領域中的一項重要議題。電化學泵作為質子交換膜燃料電池的延伸技術,具備將含氫混合氣體純化並加壓為高純氫氣的功能。電化學氫氣回收法主要以質子交換膜作為電解質,促使氫氣中的氫質子由陽極通過膜至陰極,並於陰極端與外部提供的電子結合,生成氫氣。此過程可有效回收工業製程中排放的多餘氫氣。
本研究針對電化學泵在不同操作條件下的性能進行評估,旨在找出最佳操作參數。本實驗使用 Gore M820.15 型號薄膜之電化學泵可在含 25%氫氣濃度之混和氣中,電流密度達 530 mA/cm2,換算為氫氣回收率為 91.88%,能量回收率則為 67.8%,而回收氫氣純度部分,使用 Nafion 117 薄膜之電化學泵可高達 99.92%。而本實驗亦探討不同厚度薄膜之電化學性能、穩定性測試、電化學阻抗分析、薄膜氮氣滲透率及回收氫氣濃度。研究結果顯示,電化學泵搭載厚度較薄之薄膜會有較好的性能表現,然而在回收之氫氣濃度卻低於搭載較厚薄膜之電化學泵,也可在薄膜氮氣滲透率實驗中發現厚度較厚之薄膜展現較好的氣體阻隔性。
This study evaluates the performance of electrochemical hydrogen pumps under various operating conditions, aiming to identify optimal operational parameters. The electrochemical pump employing a Gore M820.15 membrane achieved a current density of 530 mA/cm² when operating with a 25% hydrogen gas mixture, corresponding to a hydrogen recovery rate of 91.88% and an energy recovery efficiency of 67.8%. In terms of recovered hydrogen purity, the electrochemical pump with a NafionTM N117 membrane achieved a purity as high as 99.92%. Furthermore, this study explores the electrochemical performance and stability of membranes with different thicknesses, electrochemical impedance spectroscopy (EIS), nitrogen gas permeability, and the concentration of recovered hydrogen. The results indicate that electrochemical pumps equipped with thinner membranes demonstrate superior performance; however, the recovered hydrogen concentration is lower than that achieved using thicker membranes. This trend is also reflected in nitrogen permeability tests, where thicker membranes exhibit better gas barrier properties.
[1]Bouckaert, Stéphanie, et al. "Net zero by 2050: A roadmap for the global energy sector." (2021).
[2]Energy Transitions Commission. "Making the hydrogen economy possible: Accelerating clean hydrogen in an electrified economy." (2021).
[3]2024年中華民國國家溫室氣體排放清冊報告,中華民國環境部氣候變遷署,2024。
[4]林若蓁,全國性氫能發展之整體規劃,財團法人台灣經濟研究院,2017。
[5]Pivac, Ivan, Anamarija Stoilova Pavasović, and Frano Barbir. "Recent advances and perspectives in diagnostics and degradation of electrochemical hydrogen compressors." International journal of hydrogen energy 54 (2024): 387-396.
[6]Du, Zhemin, et al. "A review of hydrogen purification technologies for fuel cell vehicles." Catalysts 11.3 (2021): 393.
[7]Ghorbani, Nasser, and Yu Seung Kim. "Extraction of ultrapure hydrogen from low-concentration sources." NATURE ENERGY 9.12 (2024): 1461-1462.
[8]Sorgenfrei, Ralf, et al. "Hydrogen Recycling in CVD Processes." SSRN Electronic Journal (2023)
[9]Durmus, Gizem Nur Bulanık, C. Ozgur Colpan, and Yılser Devrim. "A review on the development of the electrochemical hydrogen compressors." Journal of Power Sources 494 (2021): 229743.
[10]Marciuš, Doria, Ankica Kovač, and Mihajlo Firak. "Electrochemical hydrogen compressor: Recent progress and challenges." International journal of hydrogen energy 47.57 (2022): 24179-24193.
[11]N. Warwick et. al.: Atmospheric implications of increased hydrogen use. Policy paper.Department for Energy Security and Net Zero / Department for Business, Energy andIndustrial Strategy, UK, 2022.
[12]台灣積體電路股份有限公司,民國114年4月18日,取自:https://esg.tsmc.com/zh-Hant/articles/353
[13]Zeng, Yiyang, et al. "Electrochemical hydrogen pump based on proton exchange membrane for rapid separation of hydrogen and helium." International Journal of Hydrogen Energy 63 (2024): 418-423.
[14]Maria Nordio, Solomon Assefa Wassie, Martin Van Sint Annaland, D. Alfredo Pacheco Tanaka, Jose Luis Viviente Sole, Fausto Gallucci, “Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid,” International Journal of Hydrogen Energy 46 (2021) 23417–23435.
[15]Vermaak, Leandri, Hein WJP Neomagus, and Dmitri G. Bessarabov. "Hydrogen separation and purification from various gas mixtures by means of electrochemical membrane technology in the temperature range 100–160 C." Membranes 11.4 (2021): 282.
[16]Maha Rhandi, Marine Trégaro, Florence Druart, Jonathan Deseure, Marian Chatenet, “Electrochemical hydrogen compression and purification versus competing technologies: Part I. Pros and cons,” Chinese Journal of Catalysis 41 (2020) 756–769.
[17]Jiexin Zou, Ning Han, Jiangyan Yan, Qi Feng, Yajun Wang, Zhiliang Zhao, Jiantao Fan, Lin Zeng, Hui Li, Haijiang Wang, “Electrochemical Compression Technologies for High‑Pressure Hydrogen: Current Status, Challenges and Perspective,” Electrochemical Energy Reviews 3 (2020) 690-729.
[18]Linda Schorer, Sven Schmitz, Alexandra Weber, “Membrane based purification of hydrogen system (MEMPHYS),” International Journal of Hydrogen Energy 44 (2019) 12708–12714.
[19]Rochlitz, L., Steinberger, M., Oechsner, R., Weber, A., Schmitz, S., Schillinger, K., Wolff, M., & Bayler, A. Second use or recycling of hydrogen waste gas from the semiconductor industry - Economic analysis and technical demonstration of possible pathways. International Journal of Hydrogen Energy, 44(31), (2019)17168–17184.
[20]Aykut, Y., Akay, R. G., & Bayrakçeken Yurtcan, A. Compression performance of an electrochemical hydrogen compressor at low and high temperatures. International Journal of Hydrogen Energy, 75, (2024) 222–228.
[21]Li, Chun Han and Yan, Wei-Mon, Experimental Measurement of Nafion and Pi Membranes Dehumidification Performance with Vacuum-Based Method. (2024)
[22]Fei Huang, Andrew T. Pingitore, and Brian C. Benicewicz, “Electrochemical Hydrogen Separation from Reformate Using High-Temperature Polybenzimidazole (PBI) Membranes: The Role of Chemistry,” ACS sustainable Chemistry & Engineering 8 (2020) 6234–6242.
[23]Chu, Chanho, et al. "Serial electrochemical hydrogen compressor stack for high-pressure compression." Applied Energy 383 (2025): 125397.
[24]Haiqin, D. A. I., et al. "Electrochemical hydrogen pump activation method and mechanism of PEMFC." Journal of Materials Engineering 51.6 (2023): 20-28.
[25]Zou, Jiexin, et al. "Insights into electrochemical hydrogen compressor operating parameters and membrane electrode assembly degradation mechanisms." Journal of Power Sources 484 (2021): 229249.
[26]Ashish Chouhan, Bamdad Bahar, Ajay K. Prasad, “Effect of back-diffusion on the performance of an electrochemical hydrogen compressor,” International Journal of Hydrogen Energy 45 (2020) 10991–10999.
[27]Maria Nordio, Filippo Rizzi, Giampaolo Manzolini, Martijn Mulder, Leonard Raymakers, Martin Van Sint Annaland, Fausto Gallucci, “Experimental and modelling study of an electrochemical hydrogen compressor,” Chemical Engineering Journal 369 (2019) 432-442.
[28]B.Rohland, K. Eberle, R. StroÈ bel, J. Scholta and J. Garche, “ Electrochemical Hydrogen Compressor, ” Electrochimica Acta, Vol.43(24) (1998) pp.3841-3846.
[29]A. Huth, B. Schaar, and T. Oekermann, “A "Proton Pump" Concept for the Investigation of Proton Transport and Anode Kinetics in Proton Exchange Membrane Fuel Cells,” Electrochimica Acta, Vol.54(10) (2009)pp.2774-2780.