簡易檢索 / 詳目顯示

研究生: 何立平
Ho, Li-Ping
論文名稱: 利用反向疫苗學開發海鱺細菌性次單位疫苗對抗發光菌
Development of bacterial subunit vaccine for cobia (Rachycentron canadum) against Photobacterium damselae ssp. piscicida by reverse vaccinology
指導教授: 楊惠郎
Yang, Huey-Lang
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 116
中文關鍵詞: 細菌性疫苗次單位疫苗反向疫苗學免疫蛋白質體發光菌協同作用
外文關鍵詞: bacterial vaccine, subunit vaccine, reverse vaccinology, immunuproteomics, Photobacterium damsela ssp. piscicida, synergetic effect
相關次數: 點閱:163下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光菌會造成魚類罹患光桿菌症,是國內水產養殖魚類最重要的致病菌,往往造成巨大的損失,過去傳統上常使用抗生素來治療,但是,會有抗生素使用過量而產生抗藥性的問題,為了有效阻止疾病的發生,疫苗已經被認為是預防疾病最有效的方法。大部分的次單位疫苗都是應用在病毒防治上,但是細菌性次單位疫苗的開發受限於基因組的長度與複雜性,仍遭遇不少困難,為有效解決此一難題,本實驗室利用反向疫苗學中的免疫蛋白質體學(Immunoproteomics),確認出較強的抗原,經由質譜儀分析獲得胺基酸序列,利用生物資訊法預測出蛋白的身份,以重組蛋白技術進行基因選殖、表現與純化重組蛋白,將八種抗原製備成疫苗進行動物實驗,結果顯示,rHSP60, rENOLASE及rGAPDH 抗原作為疫苗注射至海鱺體內會引起較高專一性抗體,且具有較高的保護效果,此項結果可以作為日後未來次單位疫苗候選(vaccine candidates)蛋白研究的參考。經由動物實驗篩選出三個保護性較強的抗原後,為了探討三種抗原之間的關係,先以不同劑量的重組蛋白作為抗原施打於魚苗體內,決定引起免疫反應的最適合劑量,實驗結果顯示,施打不同抗原劑量所引起的免疫反應,每支魚苗施打三十毫克劑量會引起較強的免疫反應,因此,以三十毫克作為施打的總劑量,將重組蛋白以不同的組成雙價或是三價疫苗進行動物實驗評估,實驗結果顯示,施打兩種重組蛋白組成的雙價疫苗具有較好的保護效果,高 於施打單一種蛋白所提供的保護效果;三種蛋白組成的三價型疫苗保護效果最低。rHSP60在疫苗的組合中,可能扮演引起免疫的主要抗原,另外兩個抗原,則與rHSP60混合時,會有增強或是協同的作用,增加保護效果,實驗的結果,可以做為未來研發水產疫苗時的重要資訊。

    Photobacterium damselae ssp. piscicida (formly Pasteurella piscicida) is the causative agent of pasteurellosis, which is the most important diseases affecting the culture of marine fishes in Taiwan. In order to protect fish from disease infection, vaccination has become achievable tool to solve problems. The development of subunit vaccines had been applied in preventing viral disease, however, the study of bacterial subunit vaccine seems to be more complicated because of large size of genome, needs lengthy assayed. A novel antigen screening system termed as “Reverse Vaccinology” that using western blotting with 2DE to identify potential antigen, LC-MS/MS to acquire amino acid sequence and recombinant technology to clone the candidate gene for the development of bacterial subunit vaccine. This approach was used to identify immune-reactive antigen candidates of P. damselae ssp. piscicida, and express these proteins such as HSP60, ENOLASE, GAPDH, MIND, GYR.B, RPSA, MREB and CDS1. These recombinant proteins were purified and used as antigen candidates in animal trial. The results indicated, we found three antigens (HSP60, ENOLASE and GAPDH ) increase of specific antibody tier after 2 weeks vaccination; after 30 days of challenge, three antigen candidates including HSP60, ENOLASE and GAPDH proteins have stronger protective efficacy might be vaccine candidates for the subunit vaccine of P. damselae ssp. piscicida. Three potent antigens (rHSP60, rENOLASE, and rGAPDH) with the ability to induce protective immunity to Photobacterium damselae ssp. piscicida in cobia fry were used to develop a subunit vaccine which was evaluated in laboratory challenge trials. Effects of varying doses and combinations of the three antigens were analyzed. The immune response increased with dose, reaching a plateau at c. 30 μg fish-1.Vaccination with 30 μg fish-1 of bivalent subunit vaccines of rHSP60 + rENOLASE, rHSP60 + rGAPDH, and rENOLASE + rGAPDH produced RPS values of 65.6, 64.0, and 48.4%, respectively, while vaccination with rHSP60, rENOLASE, or rGAPDH alone gave RPS values of 46.9, 52, and 25, respectively. The trivalent vaccine provided a RPS of 1.6%. The results indicated that a combination of two antigens rHSP60 + rEnolase or rHSP60 + rGAPDH provided the greatest protective immunity.

    Contents 中文摘要………………………………………………………………………………I Abstract………………………………………………………………........................III 誌謝…………………………………………………………………………………..V Contents……………………………………………………………………………VII List of Figures………………………………………………………………………XI List of Tables………………………………………………………………………XIV Abbreviation list…………………………………………………………………XV Preface………………………………………………………………………………...1 Chapter One Introduction…………………………………………………………………………...2 1. The status of aquaculture in Taiwan…………………………………….3 2. Induction of cobia……………………………………………………….3 2.1 Bottleneck of cobia farming……………………………………………………3 2.2 Photaobacterium damselae ssp. piscicida……………………………...4 3. The development of fish vaccine………………………………………...4 3.1 Types of fish vaccines……………………………………………......5 3.1.1 Inactivated or killed vaccine………………………………………………….5 3.1.2 Attenuated vaccine………………………………………………..................5 3.1.3 Nucleic acid vaccine……………………………………………...................5 3.1.4 Subunit vaccine…………………………………………………...................6 Chapter Two The aim of this study………………………………………………….......................7 Chapter Three Identification of antigens for the development of a subunit vaccine against Photobacterium damselae ssp. piscicida………………………………………9 1 Introduction…………………………………………………………........10 2 Materials and methods……………………………………………………11 2.1 Experimental fish……………………………………………………11 2.2 Bacterial culture……………………………………………………..11 2.3 Collection of antiserum……………………………………………...12 2.4 Preparation of total proteins (TPs)…………………………………..12 2.5 Preparation of extracellular products (ECPs)………………….........12 2.6 Isolation of outer membrane proteins (OMPs)……………………...13 2.7 Two dimensional electrophoresis (2DE)………………………........13 2.8 Immunoblotting………………………………………………..........14 2.9 LC-MS/MS protein identification………………………..................15 2.10 Cloning and sequencing of candidate antigen genes………………..15 2.11 Subcloning for expression…………………………………………..15 2.12 Expression and purification of recombinant proteins……………….16 2.13 Preparation of vaccines……………………………………………..16 2.14 Fish vaccination……………………………………………….....................17 2.15 Analysis of antibody response……………………………………………...17 2.16 Challenge trials……………………………………......................................17 3 Results…………………………………………………………………………...18 3.1 Eighteen immune-reactive proteins selected by immunoproteomics...........18 3.2 Gene cloning of immune-reactive antigen proteins………………………..19 3.3 Expression and purification of recombinant proteins…………....................19 3.4 Immunogenicity of recombinant proteins………….....................................19 3.5 Antibody response to immunization with recombinant proteins…………..19 3.6 Challenge test………………………………………………………………20 4 Discussion………………………………………………………………………..20 Chapter Four Development of subunit vaccine of Photobacerium damselae ssp. piscicida using a combination of antigens……………………………………………………..24 1 Introduction……………………………………………………………………...25 2 Materials and methods………………………………………………...................25 2.1. Fish………………………………………………………………………..25 2.2. Bacterial cultures…………………………………………………………25 2.3. Antiserum collection……………………………………………………...26 2.4. Preparation of r-proteins…………………………………………………..26 2.5. Evaluation of the dosage for immunization………………………………26 2.6. Preparation of vaccines………………………………………...................26 2.7. Fish vaccination………………………………………………...................26 2.8. Antibody measurement…………………………………………………...27 2.9. Challenge test…………………………………………………..................27 2.10. Statistical analyses………………………………………………………...28 3 Results………………………………………………………………....................28 3.1. Determination of the dosages of recombinant proteins…………………...28 3.2. Serum antibody response to vaccine with mixture of recombinant proteins……………………………………………………………………29 3.3. Protective immunity with combination of antigens…………....................30 3.4. Specific serum antibody interaction with P. damselae ssp. piscicida………………………………………..........................................31 4. Discussion………………………………………………………………………..31 Chapter Five Overall discussion……………………………………………………………………34 References…………………………………………………………………………...38 Acknowledgements………………………………………………………………….54 Figures and tables……………………………………………………………………55 Footnotes…………………………………………………………………………….86 Appendix…………………………………………………………………………….87 Primer sequences were used for cloning eight immune-reactive proteins………...88 The amino acids and DNA sequences of immune-reactive proteins………………89 Publication………..................................................................................................105 Personal curriculum vitae………………………………………………………...114

    1. Liao I, Huang T, Tsai W, Hsueh C, Chang S, Leano E. Cobia culture in Taiwan: current status and problems. Aquaculture. 2004 237:155-165.
    2. Liao IC, and Leano, Eduardo M. , editor. COBIA AQUACULTURE: Research, Development and Commercial Production Keelung: Asian Fisheries Society, World Aauaculture Society, The Fisheries Society of Taiwan, and National Taiwan Ocean University, 2007.
    3. Su MS, Chein YH, Liao IC. Potential of marine cage aquaculture in Taiwan: cobia culture. The First Aquaculture Symposium on Cage Aquaculture in Asia [Abstract]; 2000, p. 24.
    4. Gauthier G, Lafay B, Ruimy R, Breittmayer V, Nicolas JL, Gauthier M, Christen R. Small-subunit rRNA sequences and whole DNA relatedness concur for the reassignment of Pasteurella piscicida (Snieszko et al.) Janssen and Surgalla to the genus Photobacterium as Photobacterium damsela subsp. piscicida comb. nov. International Journal of Systematic and Evolutionary Microbiology. 1995 45:139-144.
    5. Snieszko SF, Bullock GL, Hollis E, Boone JG. Pasteurella sp. From an epizootic of white perch (roccus americanus) in chesapeake bay tidewater areas. Journal of Bacteriology. 1964 88:1814-1815.
    6. Romalde JL, Magarinos B. Immunization with bacterial antigens: Pasteurellosis. Developments in Biological Standardization. 1997 90:167-177.
    7. Arijo S, Balebona C, Martinez-Manzanares E, Morinigo MA. Immune response of gilt-head seabream (Sparus aurata) to antigens from Photobacterium damselae subsp piscicida. Fish & Shellfish Immunology. 2004 16:65-70.
    8. Balebona MC, Morinigo MA, Sedano J, Martinez-Manzanares E, Vidaurreta A, Borrrego JJ, Toranzo AE. Isolation of Pasteurella piscicida from sea bass in south-western Spain. Bulletin of the European Association of Fish Pathologists. 1992 12:1-3.
    9. Zorrilla I, Balebona MC, Morinigo MA, Sarasquete C, Borrego JJ. Isolation and characterization of the causative agent of pasteurellosis, Photobacterium damsela ssp piscicida, from sole, Solea senegalensis (Kaup). Journal of Fish Diseases. 1999 22:167-172.
    10. Fukuda Y, Kusuda R. Vaccination of yellowtail against pseudotuberculosis. Fish Pathology. 1985 20:421-425.
    11. Gravningen K, Sakai M, Mishiba T, Fujimoto T. The efficacy and safety of an oil-based vaccine against Photobacterium damsela subsp. piscicida in yellowtail (Seriola quinqueradiata): a field study. Fish & Shellfish Immunology. 2008 24:523-529.
    12. Liu PC, Lin JY, Lee KK. Virulence of Photobacterium damselae subsp. piscicida in cultured cobia Rachycentron canadum. Journal of Basic Microbiology. 2003 43:499-507.
    13. Duff DCB. The oral immunization of trout against Bacterium samonicida. Journal of Immunology. 1942 44:87-94.
    14. Evelyn TPT. A historical review of fish vaccinology. Developments in Biological Standardization. 1997 90:3-12.
    15. Busch RA. Enteric redmouth disease (Yersina ruckeri). In: Anserson DP, Dorson, M., Dubourget, P. , editor. Les Antige`nes des Micro-organismes Pathoge`nes des Poissons: Collection Fondation Marcel Merieux; 1982, p. 201-222.
    16. Tebbit GL, and Goodrich, T.D. Vibriosis and the development of effective bacterins for its control
    In: Anserson DP, Dorson, M., Dubourget, P. , editor. Les Antige`nes des Micro-organismes Pathoge`nes des Poissons: Collection Fondation Marcel Merieux; 1982, p. 225-248.
    17. Shao ZJ. Aquaculture pharmaceuticals and biologicals: current perspectives and future possibilities. Advanced Drug Delivery Reviews. 2001 50:229-243.
    18. Hastein T, Gudding R, Evensen O. Bacterial vaccines for fish--an update of the current situation worldwide. Developments in Biologicals. 2005 121:55-74.
    19. Gudding R, Lillehaug A, Evensen O. Recent developments in fish vaccinology. Veterinary Immunology and Immunopathology. 1999 72:203-212.
    20. Christie KE. Immunization with viral antigens: infectious pancreatic necrosis. Developments in Biological Standardization. 1997 90:191-199.
    21. Lorenzen N, Olesen NJ. Immunization with viral antigens: viral haemorrhagic septicaemia. Developments in Biological Standardization. 1997 90:201-209.
    22. Winton JR. Immunization with viral antigens: infectious haematopoietic necrosis. Developments in Biological Standardization. 1997 90:211-220.
    23. Kurath G. Overview of recent DNA vaccine development for fish. Developments in Biologicals. 2005 121:201-213.
    24. Heppell J, Lorenzen N, Armstrong NK, Wu T, Lorenzen E, Einer-Jensen K, Schorr J, Davis HL. Development of DNA vaccines for fish: vector design, intramuscular injection and antigen expression using viral haemorrhagic septicaemia virus genes as model. Fish & Shellfish Immunology. 1998 8:271-286.
    25. Anderson Ed Fau - Mourich DV, Mourich Dv Fau - Fahrenkrug SC, Fahrenkrug Sc Fau - LaPatra S, LaPatra S Fau - Shepherd J, Shepherd J Fau - Leong JA, Leong JA. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Molecular Marine Biology and Biotechnology.
    26. Lin CC, Lin JHY, Chen MS, Yang HL. An oral nervous necrosis virus vaccine that induces protective immunity in larvae of grouper (Epinephelus coioides) Aquaculture. 2007 268:265-273.
    27. Frost P, Ness A. Vaccination of Atlantic salmon with recombinant VP2 of infectious pancreatic necrosis virus (IPNV), added to a multivalent vaccine, suppresses viral replication following IPNV challenge. Fish & Shellfish Immunology. 1997 7:609-619.
    28. Chen ZJ, Peng B, Wang SY, Peng XX. Rapid screening of highly efficient vaccine candidates by immunoproteomics. Proteomics. 2004 4:3203-3213.
    29. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D'Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Dei VN, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G. Identification of a universal group B Streptococcus vaccine by multiple genome screen. Science. 2005 309:148-150.
    30. Barnes AC, dos Santos NM, Ellis AE. Update on bacterial vaccines: Photobacterium damselae subsp piscicida. Developments in Biologicals. 2005 121:75-84.
    31. Magarinos B, Noya M, Romalde JL, Perez G, Toranzo AE. Influence of fish size and vaccine formulation on the protection of gilhead seabream against Pasteurella piscicida. Fish Pathology. 1994 23:191-196.
    32. He JY, Yin Z, Xu GL, Gong ZY, Lam TJ, Sin YM. Protection of goldfish against Ichthyophthirius multifiliis by immunization with a recombinant vaccine. Aquaculture. 1997 158:1-10.
    33. Husgaro S, Grotmol S, Hjeltnes BK, Rodseth OM, Biering E. Immune response to a recombinant capsid protein of striped jack nervous necrosis virus (SJNNV) in turbot Scophthalmus maximus and Atlantic halibut Hippoglossus hippoglossus, and evaluation of a vaccine against SJNNV. Diseases of Aquatic Organisms. 2001 45:33-44.
    34. Kuzyk MA, Burian J, Machander D, Dolhaine D, Cameron S, Thornton JC, Kay WW. An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine. 2001 19:2337-2344.
    35. Mora M, Veggi D, Santini L, Pizza M, Rappuoli R. Reverse vaccinology. Drug Discovery Today. 2003 8:459-464.
    36. Nilsson CL. Bacterial proteomics and vaccine development. American Journal of Pharmacogenomics. 2002 2:59-65.
    37. Rappuoli R, Covacci A. Reverse vaccinology and genomics. Science. 2003 302:602.
    38. Nilsson CL, Larsson T, Gustafsson E, Karlsson KA, Davidsson P. Identification of protein vaccine candidates from Helicobacter pylori using a preparative two-dimensional electrophoretic procedure and mass spectrometry. Analytical Chemistry. 2000 72:2148-2153.
    39. Nilsson I, Utt M, Nilsson HO, Ljungh A, Wadstrom T. Two-dimensional electrophoretic and immunoblot analysis of cell surface proteins of spiral-shaped and coccoid forms of Helicobacter pylori. Electrophoresis. 2000 21:2670-2677.
    40. Krah A, Jungblut PR. Immunoproteomics. Methods in Molecular Medicine. 2004 94:19-32.
    41. Sanchez-Campillo M, Bini L, Comanducci R, Raggiaschi R, Marzocchi B, Pallini V, Ratti G. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis. 1999 20:2269-2279.
    42. Rao PSS, Yamada Y, Tan YP, Leung KY. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Molecular Microbiology. 2004 53:573-586.
    43. Sakai T, Matsuyama T, Nishioka T, Nakayasu C, Kamaishi T, Yamaguchi K, Iida T. Identification of major antigenic proteins of Edwardsiella tarda recognized by Japanese flounder antibody. Journal of Veterinary Diagnostic Investigation. 2009 21:504-509.
    44. Bader JA, Shoemaker CA, Klesius PH. Immune response induced by N-lauroylsarcosine extracted outer-membrane proteins of an isolate of Edwardsiella ictaluri in channel catfish. Fish & Shellfish Immunology. 2004 16:415-428.
    45. Peng XX, Ye XT, Wang SY. Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies. Vaccine. 2004 22:2750-2756.
    46. Jungblut PR, Grabher G, Stoffler G. Comprehensive detection of immunorelevant Borrelia garinii antigens by two-dimensional electrophoresis. Electrophoresis. 1999 20:3611-3622.
    47. Serruto D, Adu-Bobie J, Capecchi B, Rappuoli R, Pizza M, Masignani V. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. Journal of Biotechnology. 2004 113:15-32.
    48. Rajan PR, Lin JHY, Ho MS, Yang HL. Simple and rapid detection of Photobacterium damselae ssp piscicida by a PCR technique and plating method. Journal of Applied Microbiology. 2003 95:1375-1380.
    49. Lin J, Chen T, Chen M, Chen H, Chou R, Su M, Yang H. Vaccination with three inactivated pathogens of cobia (Rachycentron canadum) stimulates protective immunity. Aquaculture. 2006 255:125-132.
    50. Fichmann J, Westermeier R. 2-D protein gel electrophoresis. An overview. Methods in Molecular Biology. 1999 112:1-7.
    51. Watts M, Munday BL, Burke CM. Isolation and partial characterisation of immunoglobulin from southern bluefin tuna Thunnus maccoyii Castelnau. Fish & Shellfish Immunology. 2001 11:491-503.
    52. Dunnett CW. New table for multiple comparisons with a control. Biometrics. 1964 20:482-491.
    53. Amend DF. Potency testing of fish vaccines. Developments in Biological Standardization. 1981 49:447-454.
    54. Toranzo AE, Barreiro S, Casal JF, Figueras A, Magarinos B, Barja JL. Pasteurellosis in cultured gilthead seabream (Sparus-aurata) - 1st Report in Spain. Aquaculture. 1991 99:1-15.
    55. Janssen WA, Surgalla MJ. Morphology, physiology, and serology of a Pasteurella species pathogenic for white perch (Roccus americanus). Journal of Bacteriology. 1968 96:1606-1610.
    56. Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infection and Immunity. 1996 64:905-912.
    57. Dunn BE, Vakil NB, Schneider BG, Miller MM, Zitzer JB, Peutz T, Phadnis SH. Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infection and Immunity. 1997 65:1181-1188.
    58. Garduno RA, Faulkner G, Trevors MA, Vats N, Hoffman PS. Immunolocalization of Hsp60 in Legionella pneumophila. Journal of Bacteriology. 1998 180:505-513.
    59. Plant KP, LaPatra SE, Cain KD. Vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), with recombinant and DNA vaccines produced to Flavobacterium psychrophilum heat shock proteins 60 and 70. Journal of Fish Diseases. 2009 32:521-534.
    60. Khan MN, Shukla D, Bansal A, Mustoori S, Ilavazhagan G. Immunogenicity and protective efficacy of GroEL (hsp60) of Streptococcus pneumoniae against lethal infection in mice. Fems Immunology and Medical Microbiology. 2009 56:56-62.
    61. Soares RDA, Gomez FJ, Soares CMD, Deepe GS. Vaccination with heat shock protein 60 induces a protective immune response against experimental Paracoccidioides brasiliensis pulmonary infection. Infection and Immunity. 2008 76:4214-4221.
    62. Wilhelm V, Soza C, Martinez R, Rosemblatt M, Burzio LO, Valenzuela PDT. Production and immune response of recombinant Hsp60 and Hsp70 from the salmon pathogen Piscirickettsia salmonis. Biological Research. 2005 38:69-82.
    63. Bai Y, Li LR, Wang JD, Chen Y, Jin JF, Zhang ZS, Zhou DY, Zhang YL. Expression of Helicobacter pylori Hsp60 protein and its immunogenicity. World Journal of Gastroenterology. 2003 9:2711-2714.
    64. Zhang AD, Xie CY, Chen HC, Jin ML. Identification of immunogenic cell wall-associated proteins of Streptococcus suis serotype 2. Proteomics. 2008 8:3506-3515.
    65. Zhang C, Yu L, Qian R. Characterization of OmpK, GAPDH and their fusion OmpK-GAPDH derived from Vibrio harveyi outer membrane proteins: their immunoprotective ability against vibriosis in large yellow croaker (Pseudosciaena crocea). Journal of Applied Microbiology. 2007 103:1587-1599.
    66. Liu Y, Oshima S, Kawai K. Glyceraldehyde-3-phosphate dehydrogenase of Edwardsiella tarda has protective antigenicity against Vibrio anguillarum in Japanese flounder. Diseases of Aquatic Organisms. 2007 75:217-220.
    67. Liu Y, Oshima S, Kurohara K, Ohnishi K, Kawai K. Vaccine efficacy of recombinant GAPDH of Edwardsielia tarda against edwardsiellosis. Microbiology and Immunology. 2005 49:605-612.
    68. Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, Chalifa-Caspi V, Wells J, Mizrachi-Nebenzahl Y. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clinical & Experimental Immunology. 2004 138:290-298.
    69. Pancholi V, Fischetti VA. Glyceraldehyde-3-phosphate dehydrogenase on the surface of group-a Streptococci is also an adp-ribosylating enzyme. Proceedings of the National Academy of Sciences of the United States of America. 1993 90:8154-8158.
    70. Pancholi V, Fischetti VA. A Major Surface Protein on Group-a Streptococci Is a Glyceraldehyde-3-Phosphate-Dehydrogenase with Multiple Binding-Activity. Journal of Experimental Medicine. 1992 176:415-426.
    71. Pancholi V, Fischetti VA. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. Journal of Biological Chemistry. 1998 273:14503-14515.
    72. Hughes MJG, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD. Identification of major outer surface proteins of Streptococcus agalactiae. Infection and Immunity. 2002 70:1254-1259.
    73. Zhang AD, Chen B, Mu XF, Li R, Zheng P, Zhao YX, Chen HC, Jin ML. Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2. Vaccine. 2009 27:1348-1353.
    74. Finco O, Bonci A, Agnusdei M, Scarselli M, Petracca R, Norais N, Ferrari G, Garaguso I, Donati M, Sambri V, Cevenini R, Ratti G, Grandi G. Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings. Vaccine. 2005 23:1178-1188.
    75. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S. Alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Molecular Microbiology. 2001 40:1273-1287.
    76. Sha J, Erova TE, Alyea RA, Wang S, Olano JP, Pancholi V, Chopra AK. Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila. Journal of Bacteriology. 2009 191:3095-3107.
    77. Craig EA, Gambill BD, Nelson RJ. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiological Reviews. 1993 57:402-414.
    78. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cellular and Molecular Life Sciences. 2001 58:902-920.
    79. Arijo S, Rico R, Chabrillon M, Diaz-Rosales P, Martinez-Manzanares E, Balebona MC, Magarinos B, Toranzo AE, Morinigo MA. Effectiveness of a divalent vaccine for sole, Solea senegalensis (Kaup), against Vibrio harveyi and Photobacterium damselae subsp. piscicida. Journal of Fish Diseases. 2005 28:33-38.
    80. Bakopoulos V, Volpatti D, Gusmani L, Galeotti M, Adams A, Dimitriadis GJ. Vaccination trials of sea bass, Dicentrarchus labrax (L.), against Photobacterium damsela subsp. piscicida, using novel vaccine mixtures. Journal of Fish Diseases. 2003 26:77-90.
    81. Paolini A, Ridolfi V, Zezza D, Cocchietto M, Musa M, Pavone A, Conte A, Giorgetti G. Vaccination trials of sea bass (Dicentrarchus labrax) against pasteurellosis using oral, intraperitoneal and immersion methods. Veterinaria Italiana. 2005 41:137-144.
    82. Wu K, Zhang X, Shi J, Li N, Li D, Luo M, Cao J, Yin N, Wang H, Xu W, He Y, Yin Y. Immunization with a Combination of Three Pneumococcal Proteins Confers Additive and Broad Protection against Streptococcus pneumoniae Infections in Mice. Infection and Immunity. 2009 78:1276-1283.
    83. Gor DO, Ding X, Briles DE, Jacobs MR, Greenspan NS. Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae. Infection and Immunity. 2005 73:1304-1312.
    84. Cao J, Chen D, Xu W, Chen T, Xu S, Luo J, Zhao Q, Liu B, Wang D, Zhang X, Shan Y, Yin Y. Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP. Vaccine. 2007 25:4996-5005.
    85. Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infection and Immunity. 2007 75:350-357.
    86. Zhou L, Wang X, Liu Q, Wang Q, Zhao Y, Zhang Y. A novel multivalent vaccine based on secretary antigen-delivery induces protective immunity against Vibrio anguillarum and Aeromonas hydrophila. Journal of Biotechnology. 2010 146:25-30.
    87. Altindis E, Tefon BE, Yildirim V, Ozcengiz E, Becher D, Hecker M, Ozcengiz G. Immunoproteomic analysis of Bordetella pertussis and identification of new immunogenic proteins. Vaccine. 2009 27:542-548.
    88. Allen SJ, Mott KR, Zandian M, Ghiasi H. Immunization with different viral antigens alters the pattern of T cell exhaustion and latency in herpes simplex virus type 1-infected mice. Journal of Virology. 2010 84:12315-12324.
    89. Liao Y, Deng J, Zhang A, Zhou M, Hu Y, Chen H, Jin M. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiology. 2009 9:172.
    90. Pang HY, Li Y, Wu ZH, Jian JC, Lu YS, Cai SH. Immunoproteomic analysis and identification of novel immunogenic proteins from Vibrio harveyi. Journal of Applied Microbiology. 2010 109:1800-1809.
    91. Shin GW, Palaksha KJ, Kim YR, Nho SW, Cho JH, Heo NE, Heo GJ, Park SC, Jung TS. Immunoproteomic analysis of capsulate and non-capsulate strains of Lactococcus garvieae. Veterinary Microbiology. 2007 119:205-212.
    92. Sudheesh PS, LaFrentz BR, Call DR, Siems WF, LaPatra SE, Wiens GD, Cain KD. Identification of potential vaccine target antigens by immunoproteomic analysis of a virulent and a non-virulent strain of the fish pathogen Flavobacterium psychrophilum. Diseases of Aquatic Organisms. 2007 74:37-47.
    93. Wu Z, Zhang W, Lu C. Immunoproteomic assay of surface proteins of Streptococcus suis serotype 9. Fems Immunology and Medical Microbiology. 2008 53:52-59.
    94. Bowden TJ, Thompson KD, Morgan AL, Gratacap RM, Nikoskelainen S. Seasonal variation and the immune response: a fish perspective. Fish & Shellfish Immunology. 2007 22:695-706.
    95. Raida MK, Buchmann K. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri vaccination. Diseases of Aquatic Organisms. 2007 77:41-52.
    96. Pylkko P, Lyytikainen T, Ritola O, Pelkonen S, Valtonen ET. Temperature effect on the immune defense functions of Arctic charr Salvelinus alpinus. Diseases of Aquatic Organisms. 2002 52:47-55.
    97. Perez-Casanova JC, Rise ML, Dixon B, Afonso LO, Hall JR, Johnson SC, Gamperl AK. The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish & Shellfish Immunology. 2008 24:600-609.
    98. Ndong D, Chen YY, Lin YH, Vaseeharan B, Chen JC. The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish & Shellfish Immunology. 2007 22:686-694.
    99. Pahwal PK, Bansal A, Sagi SSK, Mustoori S, Govindaswamy I. Cloning, expression and characterization of heat shock protein 60 (groEL) of Salmonella enterica serovar Typhi and its role in protective immunity against lethal Salmonella infection in mice. Clinical Immunology. 2008 126:89-96.
    100. Pancholi V. Housekeeping enzymes as virulence factors for pathogens. International Journal of Medical Microbiology. 2003 293:391-401.
    101. Bly JE, Clem LW. Temperature and teleost immune functions. Fish & Shellfish Immunology. 1992 2:159-171.
    102. Chang CJ. Compare the cross protectivity of shared immunogens from Photobacterium damseale subsp. piscisida and Vibrio campbellii on Vibrio campbellii infection in Epinephelus coioide [Master thesis]. Tainan, Taiwan: National Cheng Kung University; 2011.

    下載圖示 校內:2012-01-01公開
    校外:2012-01-01公開
    QR CODE