| 研究生: |
賴志瑋 Lai, Chih-Wei |
|---|---|
| 論文名稱: |
利用光纖感測器同時量測液位與比重 Simultaneous Measurement of Liquid Level and Specific Gravity Based on Optical Fiber Sensors |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 同時量測系統 、Fabry-Perot感測器 、光纖布拉格光柵 |
| 外文關鍵詞: | simultaneous measurement system, Fabry-Perot sensor, FBG |
| 相關次數: | 點閱:116 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中提出光纖Bragg光柵式液位感測器與光纖Fabry-Perot干涉式壓力感測器的設計與製作。液位感測器係利用光纖Bragg光柵黏貼於一具有一致性強度分布之懸臂樑表面中心處,此液位感測器之靈敏度為0.01491nm/cm,可量測範圍為0.45m至0.78m且具有線性反應關係。光纖Fabry-Perot干涉式壓力感測器的設計與製作係利用微機電製程技術且只需一些簡單的流程。此壓力感測之薄膜係由聚醯亞胺層、反射金屬層及覆於金屬層上之SU-8層。此壓力感測器量測範圍為0.98kPa至6.86kPa,且具有靈敏度為0.1569μm/kPa。
同時於本研究中亦發展液位與比重之同時量測系統。利用本論文中任兩個感測元件之結合組成一液位與比重之同時量測系統,同時藉由校正感測元件能將此系統之誤差降至最低。此系統對於比重之平均誤差分別為0.0368、0.0528及0.0547,而對於液位之平均誤差則分別為0.0178m、0.0323m及0.0273m。
In this study, the optical fiber liquid level sensor based on fiber Bragg grating and the optical fiber pressure sensor based on Faby-Perot interferometer have been designed and fabricated. The liquid level sensor makes use of the fiber Bragg grating that glued onto the centric surface of uniform strength cantilever beam. The liquid level sensor can measure the range from 0.45m to 0.78m with the sensitivity of 0.01491nm/cm and it exhibits an approximately linear response. The design and fabrication of the pressure sensor based on Fabry-Perot interferometer utilize the MEMS technique and only needs a few of simple procedures. The pressure sensing membrane consists of a base polyimide layer, a metal reflective layer, and a SU-8 layer covered on the metal layer. The measurement range of the pressure sensor is from 0.98kPa to 6.86kPa with the sensitivity of 0.1569μm/kPa.
The simultaneous measurement systems of liquid level and specific gravity have also developed in this study. Any two sensor elements in this thesis can be combined to a simultaneous measurement system of liquid level and specific gravity. The system can reduce the error to minimum by way of calibration of the sensor elements. The average errors of these systems for specific gravity are 0.0153, 0.0247 and 0.0357, respectively. And the average errors of these systems for liquid level are 0.0120m, 0.0144m and 0.0273m, respectively.
[1] X. Wang, J. Xu, Y. Zhu, B. Yu, M. Han, K. Cooper, G. Pickrell, and A. Wang, "An optical fiber tip pressure sensor for medical applications," Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), Baltimore, May 2005.
[2] X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, "An all fused silica miniature optical fiber tip pressure sensor," Optics Letters, Vol. 31, No. 7, pp. 885-887, 2006.
[3] Y. Zhu and A. Wang, "Miniature fiber optic pressure sensor," IEEE Photon. Techn. Lett., Vol. 17, No. 2, pp. 447-449, 2005.
[4] K. Totsu, Y. Haga, and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry," Journal of Micromechanics and Microengineering, Vol. 15, No. 1, pp. 71-75, 2005.
[5] K. Totsu, Y. Haga, and M. Esashi, “Vacuum sealed ultra miniature fiber optic pressure sensor using white light interferometry,” in 12th Int. Conf. Transducers, Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 931–934, 2003.
[6] W.N. MacPherson, J.M. Kilpatrick, J.S. Barton, and J.D. Jones. “Miniature fiber optic pressure sensors for turbomachinery applications,” Proc. SPIE Vol. 3478, pp. 283-292, 1998.
[7] R. Melamud, A.A. Davenport, G.C. Hill, I.H. Chan, F. Declercq, P.G. Hartwell, and B.L. Pruitt. “Development of an SU-8 Fabry-Perot blood pressure sensor,” MEMS 2005. 18th IEEE International Conference, pp. 810-813, 2005.
[8] E. Cibula, D. Donlagic, and C. Stropnik. “Miniature Fiber Optic Pressure Sensor for Medical Applications,” Sensors, Proceedings of IEEE, vol.1, pp. 711- 714, 2002.
[9] E.S. Olson. “Observing middle and inner ear mechanics with novel intracoclear pressure sensors,” Journal of the Acoustical Society of America, Vol. 103, Issue 6, pp.3445-3463, 1998.
[10] S. Nesson, M. Yu, X.M. Zhang and A.H. Hsieh, “Miniaturized Fiber Optic Sensor for Measuring Intervertebral Disc Pressure,” SEM XI International Congress & Exposition on Experimental and Applied Mechanics, 2008.
[11] P.P. Banerjee, and T.C. Poon, “Principles of Applied Optics,” Aksen Associates, 1991.
[12] T. Erdogan, “Fiber Grating Spectra,” IEEE J. Lightwave Technol., Vol. 15, No. 8, pp. 1277-1294, 1997.
[13] B. Born and E. Wolf, “Principles of Optics,” New York: Pergamon, 1987.
[14] G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Quebec City, Quebec, May 10-11, Proceedings SPIE, 1516, 185-99, 1991.
[15] K.T.V. Grattan and B.T. Meggitt, “Optical Fiber Sensor Technology,” Kluwer Academic Publishers, 2000.
[16] C. E. Lee and H. F. Taylor, “Sensors for smart structures based upon the Fabry-Perot interferometer,” Eric Udd, ed., Wiley, New York, pp. 249-269, 1995.
[17] H. J. Sheng, W. F. Liu, S. S. Bor and H. C. Chang,” Fiber-Liquid-Level Sensor Based on A Fiber Bragg Grating,” Jpn. J. Appl. Phys. 47 ,2008