簡易檢索 / 詳目顯示

研究生: 王丹
Wang, Tan
論文名稱: 基於Level-Set神經元分解與⼆階算⼦之不連續函數學習⽅法
Level-Set Neural Decomposition with Second-Order Operators for Learning Discontinuous Functions
指導教授: 舒宇宸
Shu, Yu-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 39
中文關鍵詞: level-set 方法非連續函數神經分解介面學習二階運算子閘控機制
外文關鍵詞: level-set methods, discontinuous functions, neural decomposition, interface learning, second-order operator, gating mechanisms
相關次數: 點閱:21下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的多層感知器(MLP)傾向於平滑插值,因此在學習具有尖銳、高對比轉換的函數時往往效果不佳。本論文提出輕量級架構 Level-Set Neural Decomposition(LSND),將不連續性的偵測與局部函數近似解耦。首先,淺層網路回歸一個平滑的level-set場,其零等值線可柔性地將定義域分割;之後透過可微的二階閘控算子將區域專屬的單層感知器進行混合,使模型能在學習到的介面上放置任意陡峭的跳躍,同時保留梯度式訓練所需的可微性。
    為了初始化介面,我們採用基於斜率的啟發式方法,在梯度幅值較大處自動細分取樣密度,無需耗費大量搜尋或重度正則化即可獲得精確的跳躍候選點。在一維組合訊號及二維含花瓣形、雙圓形不連續面的迴歸任務中,LSND相較於寬度匹配的MLP,可將均方誤差降低一到兩個數量級,同時參數量減少10–30%、訓練時間約為一半。此優勢在複雜介面附近最為顯著:level-set 分支加速收斂,而域分解子網路避免了單一模型常見的假振盪。
    除實驗成效外,LSND亦帶來概念層面的啟示:透過於網路中嵌入幾何先驗,可將深度學習的表現力與分段光滑函數的結構相結合,為科學計算、電腦圖學與訊號處理中的不連續感知網路提供一條通用思路。目前的限制包括僅考慮單一、非交錯介面且跳躍方向一致;未來可望擴展至分支或高度震盪的不連續情形

    Learning functions that exhibit sharp, high-contrast transitions remains a challenge for conventional multilayer perceptrons (MLPs), which are biased toward smooth interpolation. This thesis introduces Level-Set Neural Decomposition (LSND), a lightweight architecture that decouples discontinuity detection from local function approximation. A shallow network first regresses a smooth level-set field whose zero-contour softly partitions the domain; region-specific single-layer perceptrons are then blended through a differentiable second-order gating operator, allowing the model to place an arbitrarily steep jump at the learned interface while preserving differentiability for gradient-based training.
    To initialize the interface, we employ a slope-based heuristic that iteratively refines sample density where gradient magnitudes are large, yielding accurate jump candidates without exhaustive search or heavy regularization.Comprehensive experiments on one-dimensional composite signals and two-dimensional regression tasks with petal-shaped and dual-circle discontinuities demonstrate that LSND attains one to two orders of magnitude lower mean-squared error than width-matched MLPs, while using 10–30% fewer parameters and roughly half the training time.These gains are most pronounced near complex interfaces, where the level-set branch expedites convergence and the domain-decomposed subnetworks avoid the spurious oscillations typical of monolithic models.
    Beyond its empirical advantages, LSND offers conceptual insight: by embedding geometric priors directly into the network, we reconcile the expressiveness of deep learning with the structure of piecewise-smooth functions, suggesting a general recipe for discontinuity-aware architectures in scientific computing, computer graphics, and signal processing. Current limitations include the assumption of a single, non-intersecting interface and uniform jump direction; extending LSND to handle branching or highly oscillatory discontinuities constitutes promising future work.

    1 Introduction 1 2 Preliminaries 3 2.1 Neural Networks and the Universal Approximation Theorem 3 2.1.1 Network Architecture 3 2.1.2 Learning via Empirical Risk Minimization 4 2.1.3 Role of Activation Functions 4 2.1.4 Universal Approximation Property 4 2.2 Gating Mechanisms in Neural Networks 5 2.2.1 Basic Formulation of Gating 5 2.2.2 Soft Partitioning of Input Space 5 2.2.3 Applications of Gating 6 2.2.4 Relation to Interface Learning 6 2.3 Level-Set Modeling of Interfaces 6 2.3.1 A Simple Example 7 2.3.2 Level-Set Operations 7 2.3.3 Learning Level-Sets with Neural Networks 8 2.3.4 Application in This Work 8 2.3.5 Scope of Interface Complexity 9 3 Methodology 10 3.1 LSND Architecture in 1D 10 3.1.1 Regularity Assumptions 11 3.1.2 Piecewise Representation 11 3.1.3 Single-jump error estimate 12 3.2 Training Pipeline via Slope-Based Jump Detection 14 3.2.1 Jump Detection Algorithm 14 3.2.2 Fixed-Interface Training 15 3.2.3 Level-Set Enhancement for 1-D 15 3.3 Extension to Two Dimensions 16 3.3.1 Interface Point Collection 16 3.3.2 Interface Network Training 17 3.3.3 Two-Region Neural Decomposition 17 3.3.4 Training Procedure 18 4 Numerical Results 19 4.1 One-Dimensional Regression 19 4.1.1 Network architectures 20 4.1.2 Training dynamics 20 4.1.3 Model Approximation Results 20 4.1.4 Quantitative summary 21 4.2 Petal-Shaped Interface in 2-D 21 4.2.1 Network architectures 22 4.2.2 Training dynamics 22 4.2.3 Model Approximation Results 23 4.2.4 Quantitative summary 23 4.3 Double-Circle Interface in 2-D 24 4.3.1 Network architectures 24 4.3.2 Training dynamics 24 4.3.3 Model Approximation Results 24 4.3.4 Quantitative summary 25 4.4 Discussion 26 5 Conclusion 27 5.1 Conclusion 27 Bibliography 29

    [1] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman. Controlling neural level sets. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pages 2034–2045, 2019.
    [2] B. Csanád Csáji. Approximation with artificial neural networks. Faculty of Sciences, Eötvös University, 2001.
    [3] Francesco Della Santa and Sandra Pieraccini. Discontinuous neural networks and discontinuity learning. Journal of Computational and Applied Mathematics, 419:114678, 2023.
    [4] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regularization for learning shapes, 2020.
    [5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359–366, 1989.
    [6] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local experts. Neural Computation, 3(1):79–87, 1991.
    [7] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of neural networks: A view from the width. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), 2017.
    [8] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces, volume 153. Springer Science & Business Media, 2006.
    [9] Stanley Osher and Ronald P Fedkiw. Level set methods: an overview and some recent results. Journal of Computational Physics, 169(2):463–502, 2001.
    [10] Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton–jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988.
    [11] Tomaso A. Poggio, Hrushikesh N. Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why and when can deep - but not shallow - networks avoid the curse of dimensionality: a review. CoRR, abs/1611.00740, 2016.
    [12] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE