簡易檢索 / 詳目顯示

研究生: 謝星宇
Hsieh, Xing-Yu
論文名稱: 糞菌移植通過調節腸道菌群及Treg/Th17細胞改善炎症性腸病
Fecal microbiota transplantation improves inflammatory bowel disease through altering gut microbiota and Treg/Th17 cells
指導教授: 楊燿榮
Yang, Yao-Jong
鄭修琦
Cheng , Hsiu-Chi
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 77
中文關鍵詞: 發炎性腸炎普拉梭菌長雙歧桿菌第十七型輔助性T細胞糞菌移植JAK-STAT3信號傳送途徑
外文關鍵詞: Inflammatory bowel disease, Faecalibacterium prausnitzii, Bifidobacterium longum, Th17 cell, fecal microbiota transplantation, JAK-STAT3 pathway
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 i English abstract ii Table of Contents v List of Tables vii List of Figures viii Abbreviation ix 1. Introduction 1 1.1. Inflammatory bowel diseases 1 1.2. Pathogenesis of IBDs 2 1.3. The dysregulation of immune responses in the pathogenesis of IBDs 3 1.4. Treatment of IBDs 4 1.5. Complementary Treatment and Alternative Medicine (CAM) in IBDs 6 1.6. Microbiota and IBDs 9 1.7. Fecal microbiota transplantation (FMT) 11 1.8. IL-6/Th17/IL-17 pathway 14 1.9. Hypothesis and objectives of this study 16 1.10. Significance of this study 17 2. Material and methods 18 2.1. DSS-Induced Colitis Mouse Models 18 2.2. Fecal microbiota suspension 19 2.3. Immunofluorescence labeling CD4+, RORγt Tcell 19 2.4. Evaluated cytokine and Ti-junction protein expression by Western blotting 20 2.5. 16s rRNA gene sequencing 21 2.6. Library preparation and sequencing 22 2.7. HT-29 anti-inflammation assay 22 2.7.1. Cell culture 22 2.7.2. Bacteria culture 23 2.7.3. Anti-inflammation assay 23 3. Result 25 3.1. Determined the treatment effect of FMT. 25 3.2. FMT treatment inhibits the intestinal CD4+, RORγt+ T cell 25 3.3. The effects of FMT on regulating immune responses in the DSS-mice model 26 3.4. FMT treatment restores DSS-induced occludin reduction but is irrelevant to MUC2 level 27 3.5. FMT treatment could change the intestinal microbiota into another type 27 3.6. Inhibition of STAT3 Phosphorylation by B. longum subsp. longum and F. prausnitzii during FMT 29 4. Discussion 30 4.1. The time point of sample collection in the animal model 30 4.2. Cytokines inhibit effect by FMT treatment 31 4.3. Effect of FMT interaction with immune cells 32 4.4. FMT changes the microbiota in mice 33 4.5. F. prausnitzii and B. longum subsp. longum interaction with the JAK-STAT signaling pathway 34 5. Reference 37 6. Table and Figure 49 8. Supplementary data 64

    1. Mulder, D.J., et al., A tale of two diseases: The history of inflammatory bowel disease. Journal of Crohn's and Colitis, 2014. 8(5): p. 341-348.
    2. Kirsner, J.B., Ulcerative Colitis, in Origins and Directions of Inflammatory Bowel Disease: Early Studies of the “Nonspecific” Inflammatory Bowel Diseases, J.B. Kirsner, Editor. 2001, Springer Netherlands: Dordrecht. p. 13-54.
    3. Crohn, B.B., L. Ginzburg, and G.D. Oppenheimer, REGIONAL ILEITIS: A PATHOLOGIC AND CLINICAL ENTITY. Journal of the American Medical Association, 1932. 99(16): p. 1323-1329.
    4. Yen, H.-H., et al., Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: a nationwide populationbased study. Intest Res, 2019. 17(1): p. 54-62.
    5. Kuenzig, M.E., et al., Twenty-first Century Trends in the Global Epidemiology of Pediatric-Onset Inflammatory Bowel Disease: Systematic Review. Gastroenterology, 2022. 162(4): p. 1147-1159.e4.
    6. Cushing, K. and P.D.R. Higgins, Management of Crohn Disease: A Review. JAMA, 2021. 325(1): p. 69-80.
    7. da Silva Júnior, R.T., et al., Crohn's disease and clinical management today: How it does? 2023(2222-0682 (Print)).
    8. de Zoeten, E.F. and I.J. Fuss, Cytokines and Inflammatory Bowel Disease, in Pediatric Inflammatory Bowel Disease, P. Mamula, et al., Editors. 2023, Springer International Publishing: Cham. p. 33-48.
    9. Chen, R., et al., Serum amyloid protein A in inflammatory bowel disease: from bench to bedside. Cell Death Discovery, 2023. 9(1): p. 154.
    10. Korta, A., J. Kula, and K. Gomułka The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2023. 24, DOI: 10.3390/ijms241210172.
    11. Shahini, A. and A. Shahini, Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. Journal of Cell Communication and Signaling, 2023. 17(1): p. 55-74.
    12. Aggeletopoulou, I., et al., Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Frontiers in Medicine, 2024. 11.
    13. Souza, R.F., et al., Study of tumor necrosis factor receptor in the inflammatory bowel disease. World Journal of Gastroenterology, 2023. 29(2219-2840 (Electronic)).
    14. Naschberger, E., et al., Analysis of the interferon-γ-induced secretome of intestinal endothelial cells: putative impact on epithelial barrier dysfunction in IBD. Frontiers in Cell and Developmental Biology, 2023. 11.
    15. Voshagh, Q., et al., Investigating the association between the tissue expression of miRNA-101, JAK2/STAT3 with TNF-α, IL-6, IL-1β, and IL-10 cytokines in the ulcerative colitis patients. Immunity, Inflammation and Disease, 2024. 12(3): p. e1224.
    16. Yan, J.-b., et al., The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. Journal of Immunology Research, 2020. 2020: p. 8813558.
    17. Jostins, L., et al., Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012. 491(7422): p. 119-124.
    18. Shan, Y., M. Lee, and E.B. Chang, The Gut Microbiome and Inflammatory Bowel Diseases. 2022(1545-326X (Electronic)).
    19. Lee, S.H., Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases. Intest Res, 2015. 13(1): p. 11-18.
    20. Kuo, W.-T., et al., The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology, 2021. 161(6): p. 1924-1939.
    21. Prasad, S., et al., Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Laboratory Investigation, 2005. 85(9): p. 1139-1162.
    22. Petersson, J., et al., Importance and regulation of the colonic mucus barrier in a mouse model of colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2010. 300(2): p. G327-G333.
    23. McNeil, E., C.T. Capaldo, and I.G. Macara, Zonula Occludens-1 Function in the Assembly of Tight Junctions in Madin-Darby Canine Kidney Epithelial Cells. Molecular Biology of the Cell, 2006. 17(4): p. 1922-1932.
    24. Zhu, L., et al., Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 2019. 10.
    25. Grondin, J.A., et al., Mucins in Intestinal Mucosal Defense and Inflammation: Learning From Clinical and Experimental Studies. Frontiers in Immunology, 2020. 11.
    26. Michielan, A. and R. D’Incà, Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators of Inflammation, 2015. 2015: p. 628157.
    27. Thursby, E. and N. Juge, Introduction to the human gut microbiota. Biochemical Journal, 2017. 474(11): p. 1823-1836.
    28. Manichanh, C., et al., The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology, 2012. 9(10): p. 599-608.
    29. Santana, P.T., et al. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2022. 23, DOI: 10.3390/ijms23073464.
    30. Zhang, H.-M., et al. Stem Cell-Based Therapies for Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2022. 23, DOI: 10.3390/ijms23158494.
    31. Ruan, S., et al., Th1 promotes M1 polarization of intestinal macrophages to regulate colitis-related mucosal barrier damage. Aging (Albany NY), 2023. 15(14): p. 6721-6735.
    32. Cao, H., et al., The Pathogenicity and Synergistic Action of Th1 and Th17 Cells in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2023. 29(5): p. 818-829.
    33. Fragoulis, G.E., S. Siebert, and I.B. McInnes, Therapeutic Targeting of IL-17 and IL-23 Cytokines in Immune-Mediated Diseases. Annual Review of Medicine, 2016. 67(Volume 67, 2016): p. 337-353.
    34. Salas, A., et al., JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 2020. 17(6): p. 323-337.
    35. Jefremow, A. and M.F. Neurath Novel Small Molecules in IBD: Current State and Future Perspectives. Cells, 2023. 12, DOI: 10.3390/cells12131730.
    36. Neurath, M.F., B.E. Sands, and F. Rieder, Cellular immunotherapies and immune cell depleting therapies in inflammatory bowel diseases: the next magic bullet? Gut, 2024: p. gutjnl-2024-332919.
    37. Reznikov, E.A. and D.L. Suskind Current Nutritional Therapies in Inflammatory Bowel Disease: Improving Clinical Remission Rates and Sustainability of Long-Term Dietary Therapies. Nutrients, 2023. 15, DOI: 10.3390/nu15030668.
    38. da Silva, B.C., Corticosteroid-Free Remission in Patients With Inflammatory Bowel Disease. Gastroenterology Hepatology, 2024. 20(3): p. 167-171.
    39. Blackwell, J., et al., Steroid use and misuse: a key performance indicator in the management of IBD. Frontline Gastroenterology, 2021. 12(3): p. 207.
    40. Quera, R., et al., Corticosteroids in inflammatory bowel disease: Are they still a therapeutic option? Gastroenterología y Hepatología (English Edition), 2023. 46(9): p. 716-726.
    41. Sahasranaman, S., D. Howard, and S. Roy, Clinical pharmacology and pharmacogenetics of thiopurines. European Journal of Clinical Pharmacology, 2008. 64(8): p. 753-767.
    42. Chan, E.S.L. and B.N. Cronstein, Molecular action of methotrexate in inflammatory diseases. Arthritis Research & Therapy, 2002. 4(4): p. 266.
    43. Frei, P., et al., Use of thiopurines in inflammatory bowel disease. World journal of gastroenterology, 2013. 19(7): p. 1040-1048.
    44. Zenlea, T. and M.A. Peppercorn, Immunosuppressive therapies for inflammatory bowel disease. World journal of gastroenterology, 2014. 20(20): p. 3146-3152.
    45. Herfarth, H.H., et al., Use of Methotrexate in the Treatment of Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2016. 22(1): p. 224-233.
    46. Tian, Z., Q. Zhao, and X. Teng, Anti-IL23/12 agents and JAK inhibitors for inflammatory bowel disease. Frontiers in Immunology, 2024. 15.
    47. De Vries, L.C.S., et al., The Future of Janus Kinase Inhibitors in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2017. 11(7): p. 885-893.
    48. Núñez, P., R. Quera, and A.J. Yarur, Safety of Janus Kinase Inhibitors in Inflammatory Bowel Diseases. Drugs, 2023. 83(4): p. 299-314.
    49. Mendelson, K., T. Evans, and T. Hla, Sphingosine 1-phosphate signalling. Development, 2014. 141(1): p. 5-9.
    50. Ben Ghezala, I., et al. Small Molecule Drugs in Inflammatory Bowel Diseases. Pharmaceuticals, 2021. 14, DOI: 10.3390/ph14070637.
    51. Gubatan, J.A.-O., et al., Anti-Integrins for the Treatment of Inflammatory Bowel Disease: Current Evidence and Perspectives. Clin Exp Gastroenterol, 2021. 14(333-342).
    52. Park, S.C. and Y.T. Jeen, Anti-integrin therapy for inflammatory bowel disease. World journal of gastroenterology, 2018. 24(17): p. 1868-1880.
    53. Lin, S.C. and A.S. Cheifetz, The Use of Complementary and Alternative Medicine in Patients With Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y), 2018. 14(7): p. 415-425.
    54. Selinger, C.P., A. Robinson, and R.W. Leong, Clinical impact and drivers of non-adherence to maintenance medication for inflammatory bowel disease. Expert Opinion on Drug Safety, 2011. 10(6): p. 863-870.
    55. Stavely, R., et al., Bone marrow-derived mesenchymal stem cells mitigate chronic colitis and enteric neuropathy via anti-inflammatory and anti-oxidative mechanisms. Scientific Reports, 2024. 14(1): p. 6649.
    56. Song, W.-J., et al., TSG-6 Secreted by Human Adipose Tissue-derived Mesenchymal Stem Cells Ameliorates DSS-induced colitis by Inducing M2 Macrophage Polarization in Mice. Scientific Reports, 2017. 7(1): p. 5187.
    57. Djouad, F., et al., Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells, 2007. 25(8): p. 2025-2032.
    58. Mounayar, M., et al., PI3kα and STAT1 Interplay Regulates Human Mesenchymal Stem Cell Immune Polarization. Stem Cells, 2015. 33(6): p. 1892-1901.
    59. Fu, Z.W., Z.Y. Zhang, and H.Y. Ge, Mesenteric injection of adipose-derived mesenchymal stem cells relieves experimentally-induced colitis in rats by regulating Th17/Treg cell balance. Am J Transl Res, 2018. 10(1): p. 54-66.
    60. Lalu, M.M., et al., Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and Meta-Analysis of Clinical Trials. PLOS ONE, 2012. 7(10): p. e47559.
    61. Shen, Z., et al., Efficacy and safety of mesenchymal stem cell therapies for ischemic stroke: a systematic review and meta-analysis. Stem Cells Translational Medicine, 2024. 13(9): p. 886-897.
    62. Ruemmele, F.M., et al., Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. Journal of Crohn's and Colitis, 2014. 8(10): p. 1179-1207.
    63. Logan, M., et al., Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn’s disease—new insights into dietary disease triggers. Alimentary Pharmacology & Therapeutics, 2020. 51(10): p. 935-947.
    64. Kerbiriou, C., et al., Treatment of Active Crohn’s Disease With Exclusive Enteral Nutrition Diminishes the Immunostimulatory Potential of Fecal Microbial Products. Inflammatory Bowel Diseases, 2024: p. izae124.
    65. Ma, Y., et al., Probiotics for inflammatory bowel disease: Is there sufficient evidence? Open Life Sci, 2024. 19(1).
    66. Bethlehem, L., et al., Microbiota therapeutics for inflammatory bowel disease: the way forward. The Lancet Gastroenterology & Hepatology, 2024. 9(5): p. 476-486.
    67. Mauriz-Barreiro, V., et al., Is Occupation a Risk Factor for Developing Inflammatory Bowel Disease? A Case–Control Study. Crohn's & Colitis 360, 2023. 5(4): p. otad065.
    68. Weingarden, A.R. and B.P. Vaughn, Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut microbes, 2017. 8(3): p. 238-252.
    69. Sheikh, I.A., et al., Transplant of microbiota from Crohn’s disease patients to germ-free mice results in colitis. Gut Microbes, 2024. 16(1): p. 2333483.
    70. Jang, H.-M., et al., Transplantation of fecal microbiota from patients with inflammatory bowel disease and depression alters immune response and behavior in recipient mice. Scientific Reports, 2021. 11(1): p. 20406.
    71. Gong, D., et al., Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2016. 2016: p. 6951091.
    72. Scheffer, M., et al., Catastrophic shifts in ecosystems. Nature, 2001. 413(6856): p. 591-596.
    73. Stojanov, S., A. Berlec, and B. Štrukelj The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 2020. 8, DOI: 10.3390/microorganisms8111715.
    74. Morgan, X.C., et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology, 2012. 13(9): p. R79.
    75. Parada Venegas, D., et al., Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 2019. 10.
    76. Guillemot, F., et al., Treatment of diversion colitis by short-chain fatty acids: Prospective and double-blind study. Diseases of the Colon & Rectum, 1991. 34(10).
    77. Prame Kumar, K., J.D. Ooi, and R. Goldberg, The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Frontiers in Microbiology, 2023. 14.
    78. Schnupf, P., et al., Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world. Current Opinion in Microbiology, 2017. 35: p. 100-109.
    79. Atarashi, K., et al., Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science, 2011. 331(6015): p. 337-341.
    80. Leccese, G., et al. Probiotic Lactobacillus and Bifidobacterium Strains Counteract Adherent-Invasive Escherichia coli (AIEC) Virulence and Hamper IL-23/Th17 Axis in Ulcerative Colitis, but Not in Crohn’s Disease. Cells, 2020. 9, DOI: 10.3390/cells9081824.
    81. Zhou, L., et al., Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflammatory Bowel Diseases, 2018. 24(9): p. 1926-1940.
    82. Xu, B., et al., Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii served as key components of fecal microbiota transplantation to alleviate colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2024. 326(5): p. G607-G621.
    83. Fanizzi, F., et al. The Role of Fecal Microbiota Transplantation in IBD. Microorganisms, 2024. 12, DOI: 10.3390/microorganisms12091755.
    84. Wu, R., et al., Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun, 2023(1095-9157 (Electronic)).
    85. Zhang, F., et al., Microbiota transplantation: concept, methodology and strategy for its modernization. Protein & Cell, 2018. 9(5): p. 462-473.
    86. Feng, J., et al., Efficacy and safety of fecal microbiota transplantation in the treatment of ulcerative colitis: a systematic review and meta-analysis. Scientific Reports, 2023. 13(1): p. 14494.
    87. Shen, Z.H., et al., Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World journal of gastroenterology, 2018. 24(1): p. 5-14.
    88. Karimi, M., et al., Safety and efficacy of fecal microbiota transplantation (FMT) as a modern adjuvant therapy in various diseases and disorders: a comprehensive literature review. Frontiers in Immunology, 2024. 15.
    89. Zhang, J.T., et al., Efficacy and safety of fecal microbiota transplantation for treatment of ulcerative colitis: A post-consensus systematic review and meta-analysis. World journal of Clinical Cases, 2024. 12(21): p. 4691-4702.
    90. Levy, A.N. and J.R. Allegretti, Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Therapeutic Advances in Gastroenterology, 2019. 12: p. 1756284819836893.
    91. Goyal, A., et al., Safety, Clinical Response, and Microbiome Findings Following Fecal Microbiota Transplant in Children With Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2018. 24(2): p. 410-421.
    92. Rees, N.P., et al., Systematic review of donor and recipient predictive biomarkers of response to faecal microbiota transplantation in patients with ulcerative colitis. eBioMedicine, 2022. 81: p. 104088.
    93. Pinto, S., et al., Dynamics of Gut Microbiota After Fecal Microbiota Transplantation in Ulcerative Colitis: Success Linked to Control of Prevotellaceae. Journal of Crohn's and Colitis, 2024: p. jjae137.
    94. Chen, S.J., et al., Washed microbiota transplantation for Crohn's disease: A metagenomic, metatranscriptomic, and metabolomic-based study. world J Gastroenterol, 2024. 30(11): p. 1572-1587.
    95. Arora, U., S. Kedia, and V. Ahuja, The practice of fecal microbiota transplantation in inflammatory bowel disease. Intest Res, 2024. 22(1): p. 44-64.
    96. Wen, X., et al., Fecal microbiota transplantation ameliorates experimental colitis via gut microbiota and T-cell modulation. World J Gastroenterol, 2021. 27(21): p. 2834-2849.
    97. Zhang, L., et al., Treatment and mechanism of fecal microbiota transplantation in mice with experimentally induced ulcerative colitis. Experimental Biology and Medicine, 2021. 246(13): p. 1563-1575.
    98. Crothers, J.W., et al., Daily, oral FMT for long-term maintenance therapy in ulcerative colitis: results of a single-center, prospective, randomized pilot study. BMC Gastroenterology, 2021. 21(1): p. 281.
    99. Huang, C., et al. Ulcerative Colitis in Response to Fecal Microbiota Transplantation via Modulation of Gut Microbiota and Th17/Treg Cell Balance. Cells, 2022. 11, DOI: 10.3390/cells11111851.
    100. Wanying, Z., et al., Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation. Journal of Microbiology and Biotechnology, 2020. 30(8): p. 1132-1141.
    101. Favoino, E., et al., Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmunity Reviews, 2021. 20(3): p. 102750.
    102. Moon, S.Y., et al. Phytochemicals Targeting JAK–STAT Pathways in Inflammatory Bowel Disease: Insights from Animal Models. Molecules, 2021. 26, DOI: 10.3390/molecules26092824.
    103. Kisseleva, T., et al., Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 2002. 285(1): p. 1-24.
    104. Takeda, K., et al., Enhanced Th1 Activity and Development of Chronic Enterocolitis in Mice Devoid of Stat3 in Macrophages and Neutrophils. Immunity, 1999. 10(1): p. 39-49.
    105. Sugimoto, K., Role of STAT3 in inflammatory bowel disease. World J Gastroenterol, 2008. 14(33): p. 5110-5114.
    106. Chandwaskar, R., et al., Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scandinavian Journal of Immunology, 2024. 100(6): p. e13412.
    107. Cătană, C.S., et al., Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World J Gastroenterol, 2015(2219-2840 (Electronic)).
    108. Jiang, P., et al., The involvement of TH17 cells in the pathogenesis of IBD. Cytokine & Growth Factor Reviews, 2023. 69: p. 28-42.
    109. Chen, L., et al., The role of Th17 cells in inflammatory bowel disease and the research progress. Frontiers in Immunology, 2023. 13.
    110. Wen, Y., et al., TH17 cell: a double-edged sword in the development of inflammatory bowel disease. Therapeutic Advances in Gastroenterology, 2024. 17: p. 17562848241230896.
    111. Lee, Y., et al., Induction and molecular signature of pathogenic TH17 cells. Nature Immunology, 2012. 13(10): p. 991-999.
    112. Lee, J.-Y., et al., Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell, 2020. 180(1): p. 79-91.e16.
    113. Wilson, A.S., et al., Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nature Communications, 2022. 13(1): p. 528.
    114. Chen, X., et al., Clostridium butyricum alleviates dextran sulfate sodium-induced experimental colitis and promotes intestinal lymphatic vessel regeneration in mice. Annals of Translational Medicine; Vol 10, No 6 (March 31, 2022): Annals of Translational Medicine, 2022.
    115. Shang, L., et al. Core Altered Microorganisms in Colitis Mouse Model: A Comprehensive Time-Point and Fecal Microbiota Transplantation Analysis. Antibiotics, 2021. 10, DOI: 10.3390/antibiotics10060643.
    116. Duary, R.K., V.K. Batish, and S. Grover, Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. Genes & Nutrition, 2014. 9(3): p. 398.
    117. Nordgren, S., et al., Small bowel length in inflammatory bowel disease. International Journal of Colorectal Disease, 1997. 12(4): p. 230-234.
    118. Marchal-Bressenot, A., et al., A practical guide to assess the Nancy histological index for UC. Gut, 2016. 65(11): p. 1919.
    119. Burrello, C., et al., Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nature Communications, 2018. 9(1): p. 5184.
    120. Liu, J., et al., Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Frontiers in Cellular and Infection Microbiology, 2023. 13.
    121. Zucoloto, A.Z., et al., Vascular traffic control of neutrophil recruitment to the liver by microbiota-endothelium crosstalk. Cell Reports, 2023. 42(5): p. 112507.
    122. Nakase, H., et al., The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmunity Reviews, 2022. 21(3): p. 103017.
    123. Singh, V., et al., Cultured fecal microbial community and its impact as fecal microbiota transplantation treatment in mice gut inflammation. Applied Microbiology and Biotechnology, 2024. 108(1): p. 463.
    124. Yang, Y., et al., Whole intestinal microbiota transplantation is more effective than fecal microbiota transplantation in reducing the susceptibility of DSS-induced germ-free mice colitis. Frontiers in Immunology, 2023. 14.
    125. Huang, C., et al., Fecal microbiota transplantation versus glucocorticoids for the induction of remission in mild to moderate ulcerative colitis. Journal of Translational Medicine, 2022. 20(1): p. 354.
    126. Wang, Y., et al., Pilot study of cytokine changes evaluation after fecal microbiota transplantation in patients with ulcerative colitis. International Immunopharmacology, 2020. 85: p. 106661.
    127. Su, S.-H., et al., Fecal microbiota transplantation and replenishment of short-chain fatty acids protect against chronic cerebral hypoperfusion-induced colonic dysfunction by regulating gut microbiota, differentiation of Th17 cells, and mitochondrial energy metabolism. Journal of Neuroinflammation, 2022. 19(1): p. 313.
    128. Anderson, P., Post-transcriptional control of cytokine production. Nature Immunology, 2008. 9(4): p. 353-359.
    129. Muromoto, R., K. Oritani, and T. Matsuda, IL-17 signaling is regulated through intrinsic stability control of mRNA during inflammation. AIMS Allergy and Immunology, 2022. 6(3): p. 188-199.
    130. Hovhannisyan, Z., et al., Characterization of Interleukin-17–Producing Regulatory T Cells in Inflamed Intestinal Mucosa From Patients With Inflammatory Bowel Diseases. Gastroenterology, 2011. 140(3): p. 957-965.
    131. Elzayat, H., et al., Deciphering salivary microbiome signature in Crohn’s disease patients with different factors contributing to dysbiosis. Scientific Reports, 2023. 13(1): p. 19198.
    132. Andoh, A., et al., Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. Journal of Gastroenterology, 2012. 47(12): p. 1298-1307.
    133. Ruder, B., R. Atreya, and C. Becker Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. International Journal of Molecular Sciences, 2019. 20, DOI: 10.3390/ijms20081887.
    134. Sanchis-Artero, L., et al., Evaluation of changes in intestinal microbiota in Crohn’s disease patients after anti-TNF alpha treatment. Scientific Reports, 2021. 11(1): p. 10016.
    135. Croci, S., et al. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients, 2021. 13, DOI: 10.3390/nu13051389.
    136. Zhang, Y., et al., Astragalus polysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/Treg cell homeostasis in a microbiota-dependent manner. Carbohydrate Polymers, 2025. 349: p. 122829.
    137. Jia, R., et al., PRM1201 effectively inhibits colorectal cancer metastasis via shaping gut microbiota and short- chain fatty acids. Phytomedicine, 2024. 132: p. 155795.
    138. Zhang, M., et al., Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3. International Immunology, 2019. 31(8): p. 499-514.
    139. Ye, L., et al., F. prausnitzii-derived extracellular vesicles attenuate experimental colitis by regulating intestinal homeostasis in mice. Microbial Cell Factories, 2023. 22(1): p. 235.
    140. Yao, S., et al., Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. Journal of Immunology Research, 2021. 2021(1): p. 8030297.
    141. Zuo, F., et al., Transcriptomic analysis of Bifidobacterium longum subsp. longum BBMN68 in response to oxidative shock. Scientific Reports, 2018. 8(1): p. 17085.
    142. Pizzino, G., et al., Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017. 2017(1): p. 8416763.
    143. Guo, Q., et al., The NAD+-dependent deacetylase, Bifidobacterium longum Sir2 in response to oxidative stress by deacetylating SigH (σH) and FOXO3a in Bifidobacterium longum and HEK293T cell respectively. Free Radical Biology and Medicine, 2017. 108: p. 929-939.
    144. Singh, S., et al., Anti-inflammatory Bifidobacterium strains prevent dextran sodium sulfate induced colitis and associated gut microbial dysbiosis in mice. Scientific Reports, 2020. 10(1): p. 18597.
    145. Yan, S., et al., Bifidobacterium longum subsp. longum YS108R fermented milk alleviates DSS induced colitis via anti-inflammation, mucosal barrier maintenance and gut microbiota modulation. Journal of Functional Foods, 2020. 73: p. 104153.

    無法下載圖示 校內:2030-01-20公開
    校外:2030-01-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE