| 研究生: |
林承暘 Lin, Cheng-Yang |
|---|---|
| 論文名稱: |
純鐵在含有超臨界二氧化碳流體之介質中的電化學碳化研究 Electrochemical Carburization of Iron in Supercritical CO2 Containing Aqueous Electrolyte |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 超臨界二氧化碳 、電化學滲碳 |
| 外文關鍵詞: | supercritical CO2, electrochemical carburization |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試以含有超臨界二氧化碳流體之電解液進行電化學碳化反應,在純鐵基材上完成電化學碳沉積,使金屬表面產生碳化,使用的電解液為1 M之硫酸鈉水溶液。本實驗採用的電化學方法有兩種,第一種為定電流製程,施加-5 A/dm2之電流密度,進行五小時的電化學碳化,第二種為定電位製程,施加的電位為 -1.5 VPt、-1.8 VPt、-2.1 VPt及-2.4 VPt,進行三小時的電化學碳化反應。實驗結果顯示,於固定電流密度下反應,可以成功的還原碳原子,使用X射線光電子能譜儀、掃描穿透式電子顯微鏡及歐傑電子能譜儀進行分析,結果顯示經過電化學碳化的試片,在表面形成一層非晶質碳的結構,並在純鐵內部有碳固溶的現象發生。若以定電位的方式進行電化學碳化,於電位-1.5 VPt、-1.8 VPt、-2.1 VPt及-2.4 VPt均可在表面發生碳還原,經過X射線光電子能譜儀及歐傑電子能譜儀的縱深分析,結果顯示碳還原之速率和還原電位的絕對值呈現正相關,電位越負時,表面之非晶質碳有較厚的趨勢,但是碳還原速率太快時,表面的非晶質碳會阻擋初生態碳的擴散,進而導致內部形成鐵碳固溶體狀態的深度較淺。
In this research, electrochemical carburization (ECC) of iron in supercritical CO2 (sc-CO2) containing aqueous electrolyte was attempted and studied. The deposition of carbon on pure iron substrate, which was reduced electrochemically from the 1 M Na2SO4 aqueous electrolyte mixing with sc-CO2. There are two electrochemical methods in this study. The first one is galvanostatic mode which applied constant current density of -5 A/dm2 for 5 hours. The second one is potentiostatic mode which conducted with constant voltage 3 hours at -1.5 VPt, -1.8 VPt, -2.1 VPt and -2.4 VPt respectively. The experimental results showed when electrochemical carburization at -5 A/dm2, an obviously reduction reaction of carbon could be found. The formation of carbon film and subsequent carburization of iron substrate was analyzed employing X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and auger electron spectroscopy (AES). The amorphous carbon layer on metal surface and Fe-C solid solution form in iron substrate was confirmed. In potentiostatic test, C 1s signal of the carbon-bearing filmsform at -1.5 VPt, -1.8 VPt, -2.1 VPt and -2.4 VPt was observed by XPS. In addition, the reduction rate of carbon depended on the cathodic potential applied in ECC treatment which is manifested by XPS and AES depth profile results. The thickness of amorphous carbon is increasing with a relative negative potential. However, the amorphous carbon film grew too fast and resisted the nascent carbon diffusing into iron substrate, resulting in a relative thin Fe-C solid solution layer.
[1] B. Selcuk, R. Ipek, and M. B. Karamıs, "A study on friction and wear behaviour of carburized, carbonitrided and borided AISI 1020 and 5115 steels," Journal of Materials Processing Technology, vol. 141, pp. 189-196, 2003.
[2] N. Agarwal, H. Kahn, A. Avishai, G. Michal, F. Ernst, and A. H. Heuer, "Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization," Acta Materialia, vol. 55, pp. 5572-5580, 2007.
[3] T. M. Loganathan, J. Purbolaksono, J. I. Inayat-Hussain, and N. Wahab, "Effects of carburization on expected fatigue life of alloys steel shafts," Materials & Design, vol. 32, pp. 3544-3547, 2011.
[4] G. Krauss, "Martensite in steel strength and structure," Materials Science and Engineering, vol. 273-275, pp. 40-57, 1999.
[5] J.R. Davis, Metals Handbook Desk Edition., USA: American Society of Metals, 1985.
[6] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, "Plasma electrolysis for surface engineering," Surface and Coatings Technology, vol. 122, pp. 73-97, 1999.
[7] M. Tarakci, K. Korkmaz, Y. Gencer, and M. Usta, "Plasma electrolytic surface carburizing and hardening of pure iron," Surface and Coatings Technology, vol. 199, pp. 205-212, 2005.
[8] F. Cavuslu and M. Usta, "Kinetics and mechanical study of plasma electrolytic carburizing for pure iron," Applied Surface Science, vol. 257, pp. 4014-4020, 2011.
[9] K. Ota and A. Tsutsumi, "Supercritical CO2-pulse cleaning in deep micro-holes," Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 2, pp. 619-628, 2008.
[10] P. Ratanajiajaroen and M. Ohshima, "Praparation of highly porous β-chitin structure through nonsolvent-solvent extrange-induced phase separation and supercritical CO2 drying," J. of Supercritical Fluids, vol. 68, pp. 31-38, 2012.
[11] A. Piras, A. R. B. Marongiu, A. Atzeri, M. A. Dess, D. Falconieri, and S. Porcedda, "Extraction and separation of volatile and fixed oils from seeds of myristica fragrans by supercritical CO2 : Chemical composition and cytotoxic activity on Coca-2 cancer cell," journal of Food Science, vol. 77, pp. C448-C453, 2012.
[12] H. Yoshida, M. Sone, A. Mizushima, K. Abe, T. X. Tang, S. Ichihara, et al., "Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution," vol. 31, pp. 1086-1087, 2002.
[13] H. Yoshida, M. Sone, H. Wakabayashi, H. Yan, K. Abe, X. T. Tao, et al., "New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film," Thin Solid Films, vol. 446, pp. 194-199, 2004.
[14] S. T. Chung and W. T. Tsai, "Nanocrystalline Ni–C Electrodeposits Prepared in Electrolytes Containing Supercritical Carbon Dioxide," Journal of The Electrochemical Society, vol. 156, p. D457, 2009.
[15] S. T. Chung and W. T. Tsai, "Effect of pressure on the electrodeposition of nanocrystalline Ni–C in supercritical CO2 fluid," Thin Solid Films, vol. 518, pp. 7236-7239, 2010.
[16] S. T. Chung, Y. C. Chuang, S. Y. Chiu, and W. T. Tsai, "Effect of H3PO3 concentration on the electrodeposition of nanocrystalline Ni–P deposited in an emulsified supercritical CO2 bath," Electrochemica Acta, vol. 58, pp. 571-577, 2011.
[17] 日本熱處理技術協會編, 熱處理技術用書, 復漢出版社, 1981.
[18] W. L. Kovacs, Commercial and Economics Trends in Ion Nitriding and Carburizing, ASM international, 1990.
[19] P. Kula, R. Pietrasik, and K. Dybowski, "Vacuum carburizing—process optimization," Journal of Materials Processing Technology, vol. 164-165, pp. 876-881, 2005.
[20] Y. Sun, X. Li, and T. Bell, "Structural characteristics of low temperature plasma carburised austenitic stainless steel," Materials Science and Technology, vol. 15, pp. 1171-1178, Oct 1999.
[21] K. G. Gudinski, Surface engineering for wear resistance, Prentice-Hall, 1988.
[22] R. J. Kawka, D. H. Herring, P. Roth, and R. J. Sitko, "With hydrocarbon and aliphatic alcohol carrier gas," Patent number: US 4,386,973 A, Term of patent: from May 8, 1981 to May 8, 2001, 1981.
[23] E. H. Kottcamp, Alloy Phase Diagrams vol.3, ASM International, 1992.
[24] J. R. Williams, A. A. C., and S. H. R. Al-Saidi, "Supercritical fluids and their applicationa in Biotechnology and related area," Molecular Biotechnology, vol. 22, 2002.
[25] R. C. Reid, J. M. Prausnitz, and B. E. Poling, The properties of gases and liquids, New York: McGraw-Hill, 1986.
[26] T. Clifforo, Fundamentals of supercritical fluids: Unitied Kingfom, Oxford University Press, 1999.
[27] 鍾松廷, 於含有超臨界二氧化碳流體之電解液中以電鍍法製備鎳基複合鍍層及材料特性研究, 國立成功大學材料科學及工程學系博士論文, 2011.
[28] B. Subranmaniam, R.A.T., and K. Snavely, "Pharmaceutical processing with supercritical carbon dioxide," Journal of Pharmaceutical Science vol. 86, p. 885, 1997.
[29] M. Lora and L.K., "Polymer processing with supercritical fluid: an overview," Seperation and purification methods, vol. 28, p. 179, 1999.
[30] J. A. Darr and M.P., "New direction in inorganic and metal-organic coordination chemistry in supercritical fluids," Chemical Reviews, vol. 99, p. 495, 1999.
[31] L. S. Daintree, A.K., and P. York, "Seperation process for organic molecules using SCF technologies," Advanced Drug Delivery Reviews, vol. 60, p. 351, 2008.
[32] G. L. Weibel and C.K.O., "An overview of supercritical CO2 applications in microelectronics processing," Microelectronics Engineering, vol. 65, p. 145, 2003.
[33] H. Yan, M. Sone, A. Mizushima, T. Nagai, K. Abe, S. Ichihara, et al., "Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant," Surface and Coatings Technology, vol. 187, pp. 86-92, 2004.
[34] H. Yoshida, M. Sone, A. Mizushima, H. Yan, H. Wakabayashi, K. Abe, et al., "Application of emulsion of dense carbon dioxide in electroplating solution with nonionic surfactants for nickel electroplating " Surface and Coatings Technology, vol. 173, p. 285, 2003.
[35] H. Yan, M. Sone, N. Sato, S. Ichihara, and S. Miyata, "The effect of dense carbon dioxide on nickel plating using emulsion of carbon dioxide in electroplating solution," Surface and Coatings Technology, vol. 182, pp. 329-334, 2004.
[36] A. Mizushima, M. Sone, H. Yana, T. Nagaib, L. Shigeharaa, S. Ichiharaa, et al., "Nanograin deposition via an electroplating reaction in an emulsion of dense carbon dioxide in a nickel electroplating solution using nanionic fluorinated surfactant," Surface and Coatings Technology, vol. 194, pp. 149-156, 2005.
[37] H. Wakabayashi, N. Sato, M. Sone, Y. Takada, H. Yan, K. Abe, et al., "Nano-grain structure of nickel films prepared by emulsion plating using dense carbon dioxide " Surface and Coatings Technology, vol. 190, pp. 200-205, 2005.
[38] M. Z. Rahman, M. Sone, M. Eguchi, K. Ikeda, S. Miyata, and T. Yamamoto, "Wear properties of nickel coating film plated from emulsion with dense carbon dioxide," Surface and Coatings Technology, vol. 201, pp. 606-611, 2006.
[39] K. M. Hong, M. S. Kim, and J. G. Chung, "Characteristic of nickel film electroplated on a copper substrate in supercritical CO2," J. Ind. Eng. Chem., vol. 11-4, pp. 683-689, 2004.
[40] M. S. Kim and C. K. Kim, "Nickel electroplating on copper substrate in plating solution containing high-density CO2," J. Ind. Eng. Chem., vol. 11-6, pp. 876-882, 2005.
[41] M. S. Kim, J. Y. Kim, C. K. Kim, and N. K. Kim, "Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2," Chemosphere, vol. 58, pp. 459-465, 2005.
[42] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, 1974.
[43] Housecroft and Sharpe, Inorganic Chemistry, Prentice-Pearson-Hall 2005.
[44] N. Greenwood, "Chemistry of the Elements," Butterworth-Heinemann, 1997.
[45] R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds, Elsevier, 2012.
[46] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 1989.
[47] W. John and E. Halit, Measurement, Instrumentation, and Sensors Handbook: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement: Baker & Taylor Books, 2014.
[48] J. F. Moulder, Handbook of X-ray photoelectron spectroscopy, Physical Electronics, Inc., 1995.
[49] L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, 1948.
[50] R. G. J.C. Lascovich, S. Scaglione, "Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES," Applied Surface Science, vol. 47, pp. 17-21, 1991.
[51] Y. Cao, F. Ernst, and G. M. Michal, "Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature," Acta Materialia, vol. 51, pp. 4171-4181, 2003.
[52] J. Ma and Y. Du, "Synthesis of nanocrystalline hexagonal tungsten carbide via co-reduction of tungsten hexachloride and sodium carbonate with metallic magnesium," Journal of Alloys and Compounds, vol. 448, pp. 215-218, 2008.
[53] H. J. Hibshman, "Diamond growth process," Patent number: US 3,371,996 A, Term of patent: from Jan. 20, 1964 to Jan. 20, 1984, 1964.
[54] H. J. G. Hartmut Hänsel, "Grain boundary segregation of phosphorus and carbon in ferritic iron," Scripta Metallurgica, vol. 20, pp. 1641-1644, 1986.
[55] A. Kirchner and B. Kieback, "Solubility of Carbon in Nanocrystalline α-Iron," Journal of Nanomaterials, vol. 2012, pp. 1-4, 2012.
[56] A. J. G Lagerberg, "Influence of grain boundaries on the behaviour of carbon and nitrogen in α-iron," Acta Metallurgica, vol. 3, pp. 236-244, 1955.