簡易檢索 / 詳目顯示

研究生: 邱英碩
Chiou, Ying-Shou
論文名稱: 利用低溫氣相冷凝法成長氧化鋅感測膜製作延伸式閘極場效電晶體酸鹼感測器之研究
ZnO EGFET pH sensor grown by vapor cooling condensation technique
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 59
中文關鍵詞: 延伸式閘極場效電晶體酸鹼感測器奈米結構低溫氣相冷凝光電化學氧化法葡萄糖
外文關鍵詞: extended-gate field-effect-transistor, EGFET, pH sensor, nanostructure, vapor cooling condensation technique, photoelectrochemical oxidation method, PEC, glucose
相關次數: 點閱:188下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用低溫氣相冷凝法與氧化鋁模板成長氧化鋅薄膜及奈米結構作為延伸式閘極場效電晶體酸鹼感測器之感測膜。利用低溫氣相冷凝法成長的氧化鋅膜具有較少之氧缺陷,對於氫離子的吸附有較佳的效果,因此應用在感測器上具有良好感度。實驗結果顯示元件在pH=4~12的範圍感測度為38 mV/pH及48 µA/pH。使用氧化鋁膜板搭配低溫氣相冷凝系統成長氧化鋅奈米結構於感測器以提升感測表面積,可使元件之感測度大幅提升至44 mV/pH及49 µA/pH。為進一步改善奈米柱表面存在的大量懸鍵所造成感測膜之費米能階無法隨不同酸鹼度待測溶液變化的Fermi level Pinning現象。本實驗使用光電化學氧化系統護佈氧化鋅奈米柱表面,使表面之介面狀態密度能有效降低,元件感測靈敏度更提高至49.36 mV/pH及52 µA/pH。 本研究再將相同元件結構及製程方法應用製葡萄糖感測器。在氧化鋅奈米柱經光電化學氧化法護佈後,感測器能有效於不同葡萄糖濃度之溶液中判斷出濃度變化,其電流感測度為20.3 µA/mM。其結果相較於無奈米結構之單層氧化鋅感測膜葡萄糖感測器13.4 µA/mM之感測度明顯有所提升。

    In this study, the vapor cooling condensation techique combining with AAM template was utilized to deposit zinc oxide thin film/nanostructure-layer complex structures, which was used as the sensing membrane of extended-gate field-effect-transistor (EGFET) pH sensor. In addition, the PEC method was applied to passivate the surface of the nanostructure of the sensor to reduce the influence of the Femi level pinning effect. Thus fabricated the ZnO-based EGFET pH sensor exhibited outstanding sensing performances owing to the larger sensing surface-to-volume ratio and lower surface state density. The obtained sensitivity of the ZnO nanostructure EGFET pH sensor was 44 mV/pH and 50 µA/pH when pH values varied from 4 to 12. Moreover, the sensitivity of the pH sensor with PEC passivation treatment further achieved 49.34 mV/pH and 52 µA/pH.
    At the same time, we applied this sensor to detect the glucose concentration. And the result showed sensing characteristics with sensitivity of 13.4 µA/mM. In addition, the sensitivity of the ZnO glucose sensor with PEC passivation treatment further achieved 20.3 µA/mM.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表目錄 Ⅵ 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究方法與論文架構 4 參考文獻 7 第二章 原理 9 2.1 簡介 9 2.2 電雙層模型 10 2.3 表面吸附鍵結膜型12 2.4 費米能階釘扎15 2.5 生物感測 16 2.5 糖尿病簡介 18 2.6 葡萄糖感測機制 20 參考文獻 25 第三章 氧化鋅酸鹼感測器及葡萄糖感測器之元件製作及量測 26 3.1低溫氣相冷凝法 26 3.2 光電化學氧化法 28 3.3 參考電極 30 3.4電壓電流量測系統32 3.5 氧化鋅延伸式閘極電晶體之製作 32 3.5.1元件清洗與導電層之製作 32 3.5.2氧化鋅感測膜及氧化鋅奈米柱之製作 32 3.5.3光電化學氧化法對氧化鋅奈米柱作表面護佈 32 3.5.4 元件封裝 33 3.5.5酵素固定層之製作 33 第四章 實驗結果與討論 41 4.1無奈米結構之氧化鋅延伸式閘極場效電晶體之元件特性 41 4.2具奈米結構之氧化鋅延伸式閘極場效電晶體之元件特性 43 4.3以光電化學氧化法處理奈米結構之氧化鋅延伸式閘極場效電晶體之元件特性 44 4.4氧化鋅延伸式閘極場效電晶體之元件解析度特性 46 4.5 氧化鋅延伸式閘極場效電晶體葡萄糖感測器元件特性 47 第五章 結論與展望 59

    第一章
    [1] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiologoical measurement”, IEEE Transaction on Biomedical Engineering, vol. 17, pp. 70-71 (1970).
    [2] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sens. Actuators B, vol. 4, pp. 291-298 (1983).
    [3] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “New structure of ion sensitive field effect transistor”, Proceedings of the biomedical Engineering Society 1988 Annual Symposium, Taiwan, vol. 4, pp. 328-331 (1998).
    [4] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane”, Material Chem. and Phys., vol. 63, pp. 19-23 (2000).
    [5] L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung, and S. K. Hsiung “Glucose ENFET Doped with MnO2 Powder”, Sens. Actuators B, vol. 91, pp. 187-192 (2001).
    [6] J. C. Chen, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor”, Sens. Actuators B, vol. 91, pp. 180-186 (2003)
    [7] B. H. Chu, B. S. Kang, F. Ren, C.Y. Chang, Y.L. Wang, S. J. Pearton, E. L. Piner, and K. J. Linthicum, “Enzyme-based lactic acid detection using AlGaN/GaN high electron Mobility transistor with ZnO nanorods grown on the gate region” Appl. Phys. Lett., vol. 93, pp. 042114-1-042114-3 (2008)
    [8] S. J. Young, L. W. Ji, S. J. Chang, T. H. Meen and K. J. Chen, “A lateral ZnO nanowire UV photodetector prepared on a ZnO:Ga/glass template”, Semicond. Sci. Technol., vol. 24, 7 (2009)
    [9] S. Eisermann, J. Sann, A. Polity, B.K. Meyer, “Sputter deposition of ZnO thin films at high substrate temperatures”, Thin Solid Films, vol. 517, pp. 5805-5807 (2009)
    [10] R. W. Chuang, R.X. Wu, L.W. Lai, and C.T. Lee, ” ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique”, Appl. Phys. Lett. vol.91, 231113 (2007)
    [11] A.M. Cowley, "Surface States and Barrier Height of Metal-Semiconductor Systems", J. Appl. Phys. vol. 36, pp.3212-3220 (1965).
    [12] L. H. Huang and C. T. Lee, “Investigation and Analysis of AlGaN MOS Devices with an Oxidized Layer Grown Using the Photoelectrochemical Oxidation Method”, J. Electrochem. Soc., vol. 154, pp.862-866 (2007).
    [13] J. V. Der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sens. Actuators B, vol. 4, pp. 291-298 (1983).
    第二章
    [1] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sens. Actuators B, vol. 4, pp.291-298 (1983).
    [2] B. B. Damaskin “Equipotentiality of the outer Helmholtz plane and the models of the electrical double layer”, Elektrokhimiya, vol. 322, pp.254-259 (1996)
    [3] I. H. Rhee, D. A. Dzombak, “Surface complexation/Gouy-Chapman modeling of binary and ternary cation exchange” Langmuir, vol. 14, pp. 935-943 (1998)
    [4] K. B. Oldham, “A Gouy-Chapman-Stern model of the double layer at a (metal)/ (ionic liquid) interface”, J. Electroanalytical Chem., vol. 613, pp. 131-138 (2008)
    [5] L. J. Bousse, N. F. deRooij and P. Bergveld, “Operation of Chemically sensitive Field-Electrolyte Transistors as a Function of the Insulator-Electrolyte Interface”, IEEE Trans. Electron Devices. Vol.30, pp.1263-1270 (1983)

    下載圖示 校內:2015-05-28公開
    校外:2015-05-28公開
    QR CODE