| 研究生: |
徐于翔 Hsu, Yu-Hsiang |
|---|---|
| 論文名稱: |
臺灣南部流域基流變化及其歸因分析 Baseflow variation and attribution analysis in Southern Taiwan Basin |
| 指導教授: |
葉信富
Yeh, Hsin-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 基流 、偏相關分析 、基流歸因分析 、小波分析 、聖嬰-南方震盪(ENSO) 、太平洋年代際震盪(PDO) |
| 外文關鍵詞: | baseflow, partial correlation analysis, attribution analysis of baseflow, wavelet analysis, the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) |
| 相關次數: | 點閱:127 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基流是河川中重要的組成部份之一,不僅是地下水系統中維持河川乾季流量的主要來源,也是提供生態環境與人為活動中用水的重要水資源。近年來由於氣候變遷的影響,臺灣的乾季時期延長,濕季時期延後,導致降雨日數的減少以及降雨強度的增加,加上降雨空間分佈不均以及河川短小流急,使臺灣成為世界上雨水量豐沛但水資源缺乏的國家,因此河川基流量的評估變得十分重要。有鑑於此,本研究以乾濕季分明的臺灣南部作為研究區域,收集各流域主要水文測站資料,以基流分離、時間序列分析、基流歸因分析和小波分析探討基流量的特性,以及其與氣候特徵之間的關聯性。分析結果顯示,臺灣南部流域基流量呈現上升趨勢,降雨和蒸發散與基流量之間皆呈現顯著正相關,其中降雨的影響比蒸發散大。另外,敏感度分析顯示蒸發散和降雨的增加會導致基流的增加,這與降雨和蒸發散皆集中於濕季有關。基流歸因分析顯示,氣候變化對基流量增加的影響(75.0%)遠大於人為活動對基流量減少的影響(–2.9%),表示氣候變化是影響臺灣南部流域基流量變化的主要因素。小波分析結果顯示,聖嬰-南方震盪(ENSO)和太平洋年代際震盪(PDO)與基流之間皆有負相關性,其中PDO的相關性大於ENSO,ENSO的時間尺度以4~8年為主,並且可能存在8年以上時間尺度;PDO的時間尺度以8年為主,並且在1年時間尺度上具有週期性的相關性變化。
Baseflow is among the most important components of streamflow. It is the main source of streamflow form groundwater systems in the dry season, and also plays an important role as a water resource in the ecological environment and for human activities. In recent years, because of climate change, the number of dry season days in Taiwan has increased, and the wet season has been delayed, resulting in fewer rainy days and increased precipitation intensity. In addition, the spatial distribution of rainfall is uneven, and rivers are short and fast-flowing, Taiwan has become a country with abundant rainfall but insufficient water resources; therefore, the assessment of baseflow is important. This study selected eight basins in Southern Taiwan with distinct wet and dry seasons as the research area. The baseflow characteristics and their relationships with climate features were assessed using baseflow separation, time series analysis, baseflow attribution analysis, and wavelet analysis. The results showed that baseflow has an increasing trend; both precipitation and evapotranspiration have a significant positive correlation with baseflow, and the impact of precipitation is greater than that of evapotranspiration. Sensitivity analysis showed that baseflow increases with increasing evapotranspiration and precipitation; this behavior is related to the concentration of precipitation and evapotranspiration in the wet season. Baseflow attribution analysis showed that the contribution of climate change to baseflow (75.0%) was larger than that of human activities (−2.9%), indicating that climate change was the main factor in the increase in baseflow. Wavelet analysis showed that both the El Niño−Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are negatively correlated with baseflow, where the PDO is more strongly correlated than the ENSO. The main time-scales of the ENSO and PDO are a 4−8-year band and an 8-year band, respectively. The ENSO may have a timescale above the 8-year band, and the PDO exhibits periodic correlation changes at a 1-year band.
1. Aboelnour, M., Gitau, M. W., & Engel, B. A. (2020). A comparison of streamflow and baseflow responses to land-use change and the variation in climate parameters using SWAT. Water, 12(1), 191.
2. Ahiablame, L., Sheshukov, A. Y., Rahmani, V., & Moriasi, D. (2017). Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River Basin. Journal of Hydrology, 551, 188-202.
3. Ayers, J. R., Villarini, G., Schilling, K., & Jones, C. (2021). On the statistical attribution of changes in monthly baseflow across the US Midwest. Journal of Hydrology, 592, 125551.
4. Baba, K., Shibata, R., & Sibuya, M. (2004). Partial correlation and conditional correlation as measures of conditional independence. Australian & New Zealand Journal of Statistics, 46(4), 657-664.
5. Budyko, M. I. (1974). Climate and life. Academic press.
6. Chen, L.Q., Liu, C.M., Li, F.D., 2006. Review on basic flow researches. Progr. Geogr. (01), 1–15 (in Chinese).
7. Cheng, Q., Zhong, F., & Wang, P. (2021). Baseflow dynamics and multivariate analysis using bivariate and multiple wavelet coherence in an alpine endorheic river basin (Northwest China). Science of The Total Environment, 772, 145013.
8. Choudhury, B. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1-2), 99-110.
9. Collischonn, W., & Fan, F. M. (2013). Defining parameters for Eckhardt's digital baseflow filter. Hydrological Processes, 27(18), 2614-2622.
10. Dai, Y. (2000). The time–frequency analysis approach of electric noise based on the wavelet transform. Solid-State Electronics, 44(12), 2147-2153.
11. Duan, W., Song, L., Li, Y., & Mao, J. (2013). Modulation of PDO on the predictability of the interannual variability of early summer rainfall over south China. Journal of Geophysical Research: Atmospheres, 118(23), 13-008.
12. Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1-2), 168-173.
13. Fan, Y., Chen, Y., Liu, Y., & Li, W. (2013). Variation of baseflows in the headstreams of the Tarim River Basin during 1960–2007. Journal of Hydrology, 487, 98-108.
14. Ficklin, D. L., Robeson, S. M., & Knouft, J. H. (2016). Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophysical Research Letters, 43(10), 5079-5088.
15. Fu, B.P. (1981). On the calculation of the evaporation from land surface. Chinese Journal of Atmospheric Sciences, 1, 002.
16. Gan, R., Sun, L., & Luo, Y. (2015). Baseflow characteristics in alpine rivers—a multi-catchment analysis in Northwest China. Journal of Mountain Science, 12(3), 614-625.
17. Gonsamo, A., Chen, J. M., & Lombardozzi, D. (2016). Global vegetation productivity response to climatic oscillations during the satellite era. Global change biology, 22(10), 3414-3426.
18. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, 11(5/6), 561-566.
19. Han, W., Meehl, G. A., Hu, A., Alexander, M. A., Yamagata, T., Yuan, D., ... & Leben, R. R. (2014). Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate dynamics, 43(5), 1357-1379.
20. Hodgkins, G. A., & Dudley, R. W. (2011). Historical summer base flow and stormflow trends for New England rivers. Water Resources Research, 47(7).
21. Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., & Gurdak, J. J. (2011). Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeology Journal, 19(6), 1269-1278.
22. Hu, C., Zhao, D., & Jian, S. (2021). Baseflow estimation in typical catchments in the Yellow River Basin, China. Water Supply, 21(2), 648-667.
23. Hung, C. W., Hsu, H. H., & Lu, M. M. (2004). Decadal oscillation of spring rain in northern Taiwan. Geophysical Research Letters, 31(22).
24. Kendall, M. G. (1948). Rank correlation methods.
25. Kim, J. H., & Jackson, R. B. (2012). A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone Journal, 11(1), vzj2011-0021RA.
26. Kinkela, K., & Pearce, L. J. (2014). Assessment of baseflow seasonality and application to design flood events in southwest Western Australia. Australasian Journal of Water Resources, 18(1), 27-38.
27. Kong, D., Miao, C., Wu, J., & Duan, Q. (2016). Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012. Ecological Engineering, 91, 566-573.
28. Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., ... & Feng, M. (2015). Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a B udyko hydrological model in C hina's L oess P lateau. Water Resources Research, 51(8), 6500-6519.
29. Li, H., Dai, A., Zhou, T., & Lu, J. (2010). Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dynamics, 34(4), 501-514.
30. Li, H., Wang, W., Fu, J., Chen, Z., Ning, Z., & Liu, Y. (2021). Quantifying the relative contribution of climate variability and human activities impacts on baseflow dynamics in the Tarim River Basin, Northwest China. Journal of Hydrology: Regional Studies, 36, 100853.
31. Li, Y., & Zhang, Q. (2018). Historical and predicted variations of baseflow in China's Poyang Lake catchment. River Research and Applications, 34(10), 1286-1297.
32. Li, Z., Liu, W. Z., Zhang, X. C., & Zheng, F. L. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of hydrology, 377(1-2), 35-42.
33. Lucas, M. C., Kublik, N., Rodrigues, D. B., Meira Neto, A. A., Almagro, A., Melo, D. D. C., ... & Oliveira, P. T. S. (2020). Significant Baseflow Reduction in the Sao Francisco River Basin. Water, 13(1), 2.
34. Longobardi, A., & Villani, P. (2008). Baseflow index regionalization analysis in a mediterranean area and data scarcity context: Role of the catchment permeability index. Journal of Hydrology, 355(1-4), 63-75.
35. Lyne, V., & Hollick, M. (1979, September). Stochastic time-variable rainfall-runoff modelling. In Institute of Engineers Australia National Conference (Vol. 79, No. 10, pp. 89-93). Barton, Australia: Institute of Engineers Australia.
36. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.
37. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the american Meteorological Society, 78(6), 1069-1080.
38. Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A., Fernández-Prieto, D., ... & Verhoest, N. E. (2017). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5), 1903-1925.
39. Meehl, G. A., & Hu, A. (2006). Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. Journal of Climate, 19(9), 1605-1623.
40. Miao, C., Ni, J., Borthwick, A. G., & Yang, L. (2011). A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Global and Planetary Change, 76(3-4), 196-205.
41. Miller, M. P., Susong, D. D., Shope, C. L., Heilweil, V. M., & Stolp, B. J. (2014). Continuous estimation of baseflow in snowmelt‐dominated streams and rivers in the U pper C olorado R iver B asin: A chemical hydrograph separation approach. Water Resources Research, 50(8), 6986-6999.
42. Mo, C., Ruan, Y., Xiao, X., Lan, H., & Jin, J. (2021). Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China. Ecological Indicators, 126, 107628.
43. Mu, Z., Liu, G., Lin, S., Fan, J., Qin, T., Li, Y., ... & Zhou, B. (2022). Base Flow Variation and Attribution Analysis Based on the Budyko Theory in the Weihe River Basin. Water, 14(3), 334.
44. Pettitt, A. N. (1979). A non‐parametric approach to the change‐point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2), 126-135.
45. Price, K. (2011). Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Progress in physical geography, 35(4), 465-492.
46. Raffensperger, J. P., Baker, A. C., Blomquist, J. D., & Hopple, J. A. (2017). Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds (No. 2017-5034). US Geological Survey.
47. Rezaei, A., & Gurdak, J. J. (2020). Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis. Science of the Total Environment, 724, 138273.
48. Rösch, A., & Schmidbauer, H. (2016). WaveletComp 1.1: A guided tour through the R package.
49. Rumsey, C. A., Miller, M. P., Schwarz, G. E., Hirsch, R. M., & Susong, D. D. (2017). The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin. Hydrological Processes, 31(26), 4705-4718.
50. Rumsey, C. A., Miller, M. P., & Sexstone, G. A. (2020). Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015. Journal of Hydrology, 584, 124715.
51. Rutledge, A. T. (1998). Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: Update (No. 98). US Department of the Interior, US Geological Survey.
52. Schaake, J. C. (1990). From climate to flow. Climate change and US water resources., 177-206.
53. Schreiber, P. (1904). Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol, 21(10), 441-452.
54. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
55. Sharifi, A., Mirabbasi, R., Nasr-Esfahani, M. A., Haghighi, A. T., & Nafchi, R. F. (2021). Quantifying the impacts of anthropogenic changes and climate variability on runoff changes in central plateau of Iran using nine methods. Journal of Hydrology, 603, 127045.
56. Sloto, R. A., & Crouse, M. Y. (1996). HYSEP: A computer program for streamflow hydrograph separation and analysis. Water-resources investigations report, 96, 4040.
57. Statistical Yearbook of Interior (2019), the annual report of internal affairs statistics e-book in 108 year, published by the Statistics Department of the Ministry of the Interior.
58. Sun, W., Song, X., Zhang, Y., Chiew, F., Post, D., Zheng, H., & Song, S. (2020). Coal mining impacts on baseflow detected using paired catchments. Water Resources Research, 56(2), e2019WR025770.
59. Szilagyi, J., Harvey, F. E., & Ayers, J. F. (2003). Regional estimation of base recharge to ground water using water balance and a base‐flow index. Groundwater, 41(4), 504-513.
60. Taiwan waterworks statistical annual report (2020), Taiwan waterworks statistical annual report, published by Taiwan Water Corporation.
61. Tan, X., Liu, B., & Tan, X. (2020). Global changes in baseflow under the impacts of changing climate and vegetation. Water Resources Research, 56(9), e2020WR027349.
62. Techamahasaranont, J., Shrestha, S., Babel, M. S., Shrestha, R. P., & Jourdain, D. (2017). Spatial and temporal variation in the trends of hydrological response of forested watersheds in Thailand. Environmental Earth Sciences, 76(12), 1-18.
63. Tetzlaff, D., & Soulsby, C. (2008). Sources of baseflow in larger catchments–Using tracers to develop a holistic understanding of runoff generation. Journal of Hydrology, 359(3-4), 287-302.
64. Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s contributions to economics and econometrics (pp. 345-381). Springer, Dordrecht.
65. Wang, D., & Cai, X. (2010). Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds. Geophysical Research Letters, 37(6).
66. Wang, D., & Tang, Y. (2014). A one‐parameter Budyko model for water balance captures emergent behavior in Darwinian hydrologic models. Geophysical Research Letters, 41(13), 4569-4577.
67. Water Resource Agency (2017),Assessment of groundwater potential exploiting zones and groundwater yields in Gaoping and Chianan Watersheds (2/2),published by Water Resource Agency, MOEA.
68. Water Resource Agency (2020), Hydrology Annual Report, published by Water Resource Agency, MOEA.
69. Wu, C. R. (2013). Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Progress in Oceanography, 110, 49-58.
70. Wu, J., Miao, C., Zhang, X., Yang, T., & Duan, Q. (2017). Detecting the quantitative hydrological response to changes in climate and human activities. Science of the Total Environment, 586, 328-337.
71. Wu, J., Miao, C., Duan, Q., Lei, X., Li, X., & Li, H. (2019). Dynamics and attributions of baseflow in the semiarid Loess Plateau. Journal of Geophysical Research: Atmospheres, 124(7), 3684-3701.
72. Xie, Z., Mu, X., Gao, P., Wu, C., & Qiu, D. (2021). Impacts of Climate and Anthropogenic Activities on Streamflow Regimes in the Beiluo River, China. Water, 13(20), 2892.
73. Xu, X., Yang, D., Yang, H., & Lei, H. (2014). Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. Journal of Hydrology, 510, 530-540.
74. Yang, H., Yang, D., Lei, Z., & Sun, F. (2008). New analytical derivation of the mean annual water‐energy balance equation. Water resources research, 44(3).
75. Yang, Q., Li, Z., Han, Y., & Gao, H. (2020). Responses of Baseflow to Ecological Construction and Climate Change in Different Geomorphological Types in The Middle Yellow River, China. Water, 12(1), 304.
76. Yeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., Dommenget, D., Dewitte, B., ... & Kug, J. S. (2018). ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Reviews of Geophysics, 56(1), 185-206.
77. Yeh, H. F., & Huang, C. C. (2019). Evaluation of basin storage–discharge sensitivity in Taiwan using low‐flow recession analysis. Hydrological Processes, 33(10), 1434-1447.
78. Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water resources research, 37(3), 701-708.
79. Zhang, J., Song, J., Cheng, L., Zheng, H., Wang, Y., Huai, B., ... & Li, Q. (2019). Baseflow estimation for catchments in the Loess Plateau, China. Journal of environmental management, 233, 264-270.
80. Zhao, G., Tian, P., Mu, X., Jiao, J., Wang, F., & Gao, P. (2014). Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. Journal of Hydrology, 519, 387-398.
81. Zheng, H., Zhang, L., Zhu, R., Liu, C., Sato, Y., & Fukushima, Y. (2009). Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resources Research, 45(7).