| 研究生: |
林俊達 Lin, Chun-Ta |
|---|---|
| 論文名稱: |
煉鋼爐渣蒸壓產製氣泡混凝土之特性研究 Characteristics of autoclaved aerated concrete produced from steel-making slags |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 高壓蒸氣養護 、氣泡混凝土 、轉爐石 、脫硫渣 、托伯莫萊土 |
| 外文關鍵詞: | autoclave curing, aerated concrete, basic oxygen furnace slag, desulfurization slag, tobermorite |
| 相關次數: | 點閱:180 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
煉鋼爐渣之轉爐石(basic oxygen furnace slag,BOF slag)與脫硫渣(desulfurization slag,DS slag)含有鈣、矽等物質應具有作為高壓蒸氣養護氣泡混凝土(autoclaved aerated concrete,AAC)替代原料之潛力。本研究以氧化鈣(CaO)、二氧化矽(SiO2)、卜特蘭水泥(Portland cement)作為原料,並以鋁粉(Al powder)作為發泡劑,控制原料配比及漿體製作條件,配合高壓蒸氣養護程序,以其製品特性歸納製作AAC之最適原料成分與高壓蒸氣養護條件,並以轉爐石與脫硫渣調質作為AAC之替代原料,探討其製品特性、晶相組成與微觀結構,評析上述煉鋼爐渣再利用於AAC之可行性。
研究結果顯示,磁選分離程序可使轉爐石與脫硫渣之非著磁部分富含Ca、Si元素,進而提高作為AAC替代原料之潛力,漿體製備則可藉由調整拌合水量(水固比,W/S)與鋁粉劑量控制成型漿體之密度,其中以改變水固比方式最具成效,而AAC製品密度大致不受蒸氣壓力與養護時間所影響,因此可藉由調製漿體控制AAC製品密度。由AAC製品特性、熱重分析、晶相組成與水化物微觀結構歸納最適原料配比與高壓蒸氣養護程序,以原料組成SiO2 = 70 wt.%、CaO = 25 wt.%、水泥5 wt.%之乾基配比於蒸氣壓力12 atm、養護時間16小時條件下所得之AAC製品具有最佳抗壓強度6.59 MPa,可符合AAC-4(4.0 MPa)與AAC-6(6.0 MPa)標準規範,密度為673 kg/m3,兼具輕質特性。
以轉爐石與脫硫渣非著磁部分作為AAC替代原料,調控水固比及改質漿體更可使替代比例提高。其中轉爐石替代比例15 wt.%、水固比0.75 L/kg與替代比例30 wt.%、水固比0.60 L/kg之AAC製品可分別符合AAC-2(2.0 MPa)與AAC-4(4.0 MPa)標準規範。在脫硫渣方面,使用NaOH(aq)鹼性水溶液改質漿體具有快速簡便且其AAC製品具備質輕高強度等優點,替代比例20 wt.%與40 wt.%可分別符合AAC-4與AAC-2之標準規範。此外,觀察AAC製品之晶相組成與水化物微觀結構可發現托伯莫萊土(tobermorite,Ca5(OH)2Si6O16•4H2O)水化物生成,而tobermorite可貢獻AAC製品之強度發展,因此由製品特性、晶相組成與微觀結構可知轉爐石與脫硫渣應適合再利用於AAC製造。
Basic oxygen furnace slag (BOF slag) and desulfurization slag (DS slag) are by products of steel-making processes. These slags contain large amounts of Ca and Si, so that they have the potential using in the production of autoclaved aerated concrete (AAC). This research firstly uses lime (CaO), quartz (SiO2), and Portland cement as raw materials with Al powder as expansion agent to produce AAC, and determines the appropriate proportions of the raw materials and suitable autoclave curing procedure. In addition, this study reuses BOF and DS slags as raw materials in AAC production.
The results show that the non-magnetic BOF and DS slags contain large amounts of Ca and Si, which are suitable for AAC raw materials. It is noticed that the density of AAC is mainly determined by water to solids ratio (W/S) and Al powder amount, especially W/S. Moreover, the autoclave curing time shows no significant influence on the density of AAC. Based on the characteristics of AAC products, the optimal proportion of raw materials is SiO2:CaO:cement = 70:25:05, and the suitable autoclave curing procedure is under 12-atm saturated steam pressure for 16 h. With such preparation conditions, the AAC products have highest compressive strength (6.59 MPa), which can meet the AAC-6 (6.0 MPa) and AAC-4 (4.0 MPa) standards.
In terms of reusing BOF and DS slags in AAC production, it is noticed that the replacement ratio of slag can be increased by controlling the W/S values or conditioning the AAC pastes. When the replacement ratios of BOF slag are equal to 15 wt.% and 30 wt.%, and the W/S values are controlled at 0.75 L/kg and 0.60 L/kg, the AAC products can meet the AAC-2 (2.0 MPa) and AAC-4 (4.0 MPa) standards, respectively. In terms of DS slag, increasing the alkalinity of AAC pastes by NaOH(aq) has some advantages, including easy operation and high compressive strength per unit density. When the replacement ratios of DS slag are equal to 20 wt.% and 40 wt.%, the AAC products can meet the AAC-4 and AAC-2 standards, respectively. Furthermore, it is found the tobermorites (Ca5(OH)2Si6O16•4H2O) form in AAC products, such as plate-like and lath-like tobermorites could enhance the compressive strength. According to above research results, it can be concluded that utilization of BOF and DS slags as raw materials to produce AAC is feasible.
Alarcon-Ruiz, L., Platret, G., Massieu, E., & Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research, 35(3), 609-613.
Bensted, J. & Barnes, P. (2002). Structure and Performance of Cements. New York: Spon Press.
Bhatty, J. I. & Reid, K. J. (1989). Compressive strength of municipal sludge ash mortars. ACI Material Journal, 86-M34.
Cheyrezy, M., Maret, V., & Frouin, L. (1995). Microstructural analysis of RPC (reactive powder concrete). Cement and Concrete Research, 25(7), 1491-1500.
Connan, H., Klimesch, D., Ray, A., & Thomas, P. (2006). Thermal characterization of autoclaved cement made with alumina-silica rich industrial waste. Journal of Thermal Analysis and Calorimetry, 84(2), 521-525.
Cullity, B. D. & Stock, S. R. (2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.
Elkins, B. V., Wilson, G. E., & Gersberg, R. M. (1985). Complete reclamation of wastewater and sludge. Water Science and Technology, 17(8), 1453-1454.
Gutovic, M., Klimesch, D. S., & Ray, A. (2005). Strength development in autoclaved blends made with OPC and clay-brick waste. Construction and Building Materials, 19(5), 353-358.
Isu, N., Teramura, S., Ishida, H., & Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (II) tobermorite formation. Cement and Concrete Research, 25(2), 249-254.
Isu, N., Ishida, H., & Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (I) tobermorite formation. Cement and Concrete Research, 25(2), 243-248.
Kjellsen, K. O., Detwiler, R. J., & Gjorv, O. E. (1990). Backscattered electron imaging of cement paste hydrated at different temperature. Cement and Concrete Research, 20(2), 308-311.
Kohler, N. (1983). In: Wittmann, F. H. (Ed.) Global energetic budget of aerated concrete. Autoclaved Aerated Concrete, Moisture and Properties. New York: Elsevier.
Kurama, H., Topcu, I. B., & Karakurt, C. (2009). Properties of the autoclaved aerated concrete produced from coal bottom ash. Journal of Materials Processing Technology, 209(2), 767-773.
Mitsuda, T., Sasaki, K., & Ishida, H. (1992). Phase evolution during autoclaving process of aerated concrete. Journal of the American Ceramic Society, 75(7), 1858-1863.
Mostafa, N. Y. (2005). Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cement and Concrete Research, 35(7), 1349-1357.
Mostafa, N. Y., Shaltout, A. A., Omar, H., & Abo-El-Enein, S. A. (2009). Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. Journal of Alloys and Compounds, 467(1), 332-337.
Narayanan, N. & Ramamurthy, K. (2000). Microstructural investigation on aerated concrete. Cement and Concrete Research, 30(3), 457-464.
Pera, J., Coutaz, L., Ambroise, J., & Chababbet, M. (1997). Use of incinerator bottom ash in concrete. Cement and Concrete Research, 27(1), 1-5.
Prim, P. & Wittmann, F. H. (1983). In: Wittmann, F. H. (Ed.) Structure and water absorption of aerated concrete. Autoclaved Aerated Concrete, Moisture and Properties. New York: Elsevier.
Ramamurthy, K. & Narayanan, N. (2000). Factors influencing the density and compressive strength of aerated concrete. Magazine of Concrete Research, 52(3), 163-168.
Sanchez de Rojas, M. I. & Frias, M. (1995). The pozzolanic activity of different materials, its influence on the hydration heat in mortars. Cement and Concrete Research, 26(2), 203-213.
Sha, W., O’Neill, E.A., & Guo, Z. (1999). Differential scanning calorimetry study of ordinary Portland cement. Cement and Concrete Research, 29(9), 1487-1489. Short, A. & Kinniburgh, W. (1976). Lightweight concrete. Formerly Building Research Establishment, U.K.
Smith, M. R. & Collis, L. (1993). Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes. London: Geological Society.
St. George, M. (1986). Concrete aggregate from wastewater sludge. Concrete International, 8(11), 27-30.
Toutanji, H. A. & Bayasi, Z. (1999). Effect of curing procedures on properties of silica fume concrete. Cement and Concrete Research, 29(4), 497-501.
Verbeck, G. J. & Helmuth, R. H. (1968). Structures and physical properties of cement past. Proceedings of the 5th International Symposium on the Chemistry, 1-32.
Wainwriht, P. J. & Cresswell, D. J. F. (2001). Synthetic aggregates from combustion ashs using an innovative rotary kiln. Waste Management, 21(3), 241-246.
Wittmann, F. H. (1992). Advances in aotuclaved aerated concrete. Proceedings of the 3rd RILEM International Symposium on Autoclaved Aerated Concrete.
Wongkeo, W. & Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Materials Science and Engineering A, 527(16), 3676-3684.
Wu, S., Xue, Y., Ye, Q., & Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 42(7), 2580-2585.
Xue, Y., Wu, S., Hou, H., & Zha, J. (2006). Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. Journal of Hazardous Materials, 138(2), 261-268.
中國鋼鐵公司,中鋼安衛環境報告書,2005。
中國鋼鐵公司,爐石利用推廣手冊,四版,2003。
王弟文,下水污泥焚化灰製造發泡輕質混凝土之研究,國立中央大學環境工程研究所,碩士論文,2001。
王金鐘,轉爐石作為基底層材料及其工程特性之研究,國立成功大學土木工程研究所,博士論文,2004。
吳一民,灰渣類廢棄物應用於廢水中有機物去除之研究,國立成功大學環境工程學系,碩士論文,1997。
吳忠柱、傅君彥,灰渣吸附廢水中有機物可行性之研究,國立成功大學第七屆全校論文比賽作品集,1996。
宋文方,轉爐石吸收二氧化硫之研究,國立臺灣大學化學工程研究所,碩士論文,2004。
李俊德,輕質骨材性質與最佳混凝土強度之研究,國立台灣工業技術學院營建工程技術研究所,碩士論文,1996。
邱義豐、牟金錄,中鋼自產脫硫渣資源化研究,第二屆工業減廢技術與策略研討會,1993。
林家宏,飛灰調質溶渣成份對卜作嵐反應特性之影響,國立中央大學環境工程研究所,碩士論文,2004。
陳仁炫、邱義豐,高爐渣及脫硫渣在強酸性土壤改良上之應用研究,酸性土壤之特性及其改良研討會,1993。
袁家偉,使用轉爐石提升耐久性瀝青混凝土成效之研究,國立中央大學土木工程研究所,碩士論文,2007。
張明峰,高爐石與脫硫渣之力學特性研究,國立成功大學土木工程研究所,碩士論文,1994。
張祖恩、李德河,中鋼公司脫硫渣作為填地材料可行性研究,研究報告第一五八號,國立成功大學環境工程學系,1994。
黃兆龍,混凝土性質與行為,詹氏書局,三版,臺北市,2005。
黃兆龍,混凝土品質保證、檢驗與制度,詹氏書局,臺北市,1997。
黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,第三十二期,第55~59頁,1984。
楊貫一,爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第17卷,第一期,第31~46頁,1992。
劉玉雯、陳豪吉、湯兆緯,輕質骨材混凝土之隔熱性質,輕質骨材及輕質骨材混凝土應用研討會論文集,第83~98頁,2003。
劉國忠,煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第四期十月號,第117~118頁,2001。
蔡恩榮,Kish graphite回收與精製之研究,國立成功大學礦冶及材料科學研究所,碩士論文,1993。
謝素蘭,以高壓及高溫燒結技術鑄造水泥、粘土及飛灰混合料組件之研究,國立台灣工業技術學院工程技術研究所,碩士論文,1990。
顏聰、陳豪吉,輕質骨材混凝土設計規範及防火隔熱性質研究,內政部建築研究所委託研究報告,2004。
顏聰、黃兆龍、高健章,水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣,內政部建築研究所計畫成果報告,2003。
龔人俠,水泥化學概論,台灣區水泥工業同業公會,臺北市,1997。