| 研究生: |
蔡怡青 Tsai, I-Ching |
|---|---|
| 論文名稱: |
氧自由基在血管收縮素所誘導的平滑肌細胞老化中扮演的角色 The role of reactive oxygen species in Angiotensin II-induced vascular smooth muscle cell senescence |
| 指導教授: |
江美治
Jiang, Meei-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 老化 、氧自由基 |
| 外文關鍵詞: | senescence, reactive oxygen species |
| 相關次數: | 點閱:165 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管細胞老化會造成血管老化,是血管疾病的主要危險因子。細胞老化意指許多因素,例如DNA損壞或氧化壓力(oxidative stress),導致細胞無法進入細胞週期,進行分裂。當氧自由基(reactive oxygen species)產生過量時,可能會增加細胞的DNA損壞,最後導致細胞凋亡或細胞老化的現象。NADPH氧化酶(Nox)和粒線體為血管平滑肌細胞產生氧自由基的主要來源。此外,粒線體也是氧自由基傷害的主要目標,過多的氧自由基會造成粒線體的損傷。先前的研究指出,血管收縮素刺激氧化壓力,進而導致血管平滑肌細胞老化,但其詳細機制仍尚未釐清。本研究主要探討NADPH氧化酶以及粒線體在血管收縮素所誘導的氧自由基生成與人類主動脈血管平滑肌細胞老化的角色。將血管平滑肌細胞以血管收縮素處理24、48及72小時後,利用能夠標記細胞老化的senescence-associated β-galactosidase活性測量,發現老化細胞的比例顯著上升。有趣的是,以血管收縮素處理細胞短時間(5分鐘)與長時間(24 至72小時)都會增加氧自由基的產生。若使用氧自由基清除劑N-acetyl-L-cysteine(NAC) 與apocynin,或可通透細胞膜之過氧化氫酶(membrane-permeable catalase),均會抑制血管收縮素所誘導的氧自由基產生,並抑制細胞老化。此外,以干擾RNA(siRNA) 抑制NADPH氧化酶的分子異構物Nox1,也顯著抑制血管收縮素所誘導的細胞老化。在相同的條件下,Nox1的干擾RNA完全抑制短暫性(transient)氧自由基的產生,但對持續性(sustained)的氧自由基產生的影響較不顯著。相對地,使用粒線體氧自由基的專一性抑制劑,mito-Q10,能抑制血管收縮素所誘導的細胞老化,同時抑制持續性(sustained)的氧自由基產生,對短暫性的氧自由基產生的影響則不顯著。粒線體專一性染色結果顯示,血管收縮素處理72小時後,氧自由基的位置與粒線體高度吻合。此外,Nox1的干擾RNA與mito-Q10皆顯著抑制血管收縮素造成的粒線體膜電位去極化的現象。上述結果顯示,血管收縮素在前期透過Nox1產生短暫性的氧化壓力,在後期則透過粒線體,產生持續性的氧化壓力,導致粒線體功能失調,進而導致血管平滑肌細胞的老化。
Vascular aging manifested by vascular cell senescence is a major risk factor that facilitates vascular diseases. Cellular senescence, characterized by inability of cells to enter cell cycle in response to mitogens, can be caused by multiple factors including telomere dysfunction, DNA damage and oxidative stress. Excessive production of reactive oxygen species (ROS) increases DNA damage and ultimately results in apoptosis or cellular senescence. NADPH oxidases (Nox) and mitochondria are major sources for ROS production in vascular smooth muscle cells (VSMCs). Mitochondria are both major source of detrimental ROS production and oxidation targets, eventually leading to their dysfunction. Oxidative stress plays a role in angiotensin II (Ang II)-induced cellular senescence of VSMCs, but the mechanisms remain unclear. This study investigated the role of NADPH oxidases and mitochondria in Ang II-induced ROS production and cellular senescence of human aortic VSMC. Ang II teatment (10-7 M) for 24 h, 48 h or 72 h induced VSMC senescence assessed with senescence-associated β-galactosidase activity. Interestingly, Ang II stimulated a transient ROS production peaked at 5 min and a sustained ROS production between 24 h and 72 h. ROS scavenging with antioxidants N-acetyl-L-cysteine and apocynin or a membrane-permeable catalase abolished Ang II-induced ROS production and cellular senescence. Furthermore, small interfering RNA (siRNA) for NADPH oxidase catalytic subunit isoform Nox1 markedly inhibited Ang II-induced cellular senescence. Under this condition, Nox1 siRNA abolished Ang II-induced transient ROS production but was less effective in inhibiting the sustained ROS production. In contrast, a mitochondria-specific ROS inhibitor, mito-Q10, inhibited Ang II-induced sustained ROS production and cellular senescence of VSMCs. Mitochondria-specific staining showed that ROS and mitochondria were highly co-localized at 72 h Ang II treatment. Both Nox1 siRNA and mito-Q10 effectively inhibited Ang II-induced mitochondria membrane depolarization. These results suggested that oxidative stress involving Nox1-dependent NADPH oxidase in the transient phase and mitochondria in the sustained phase leads to mitochondrial dysfunction and mediates Ang II-induced cellular senescence of VSMCs.
1. Anthea M. Human Biology and Health. Englewood Cliffs, New Jersey: Prentice Hall. 1993;13(9) 81-176 .
2. Rainwater DL, McMahan CA, Malcom GT. Lipid and apolipoprotein predictors of atherosclerosis in youth: apolipoprotein concentrations do not materially improve prediction of arterial lesions in PDAY subjects. The PDAY Research Group. Arterioscler Thromb Vasc Biol.1999;19 (3): 753–61.
3. Kuller L, Borhani N, Furberg C, Gardin J, Manolio T, O'Leary D, Psaty B, Robbins J. Prevalence of subclinical atherosclerosis and cardiovascular disease and association with risk factors in the Cardiovascular Health Study. AJE. 1994;139(12):1164-1179.
4. Lakatta EG, Levy D. Arterial and Cardiac Aging: Major Shareholders in Cardiovascular Disease Enterprises. Circulation. 2003;107(5):139-146
5. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Cell Res. 1965; 37(7):614–636.
6. Serrano M, Lin AW, Currach ME, Beach D., Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4α. Cell.1997;88(11):593-602.
7. Mason DX, Jackson TJ, Lin AW. Molecular signature of oncogenic ras-induced senescence. Oncogene. 2004;23(6)9238–9246.
8. Bodnar AG. Extension of life span by introduction of telomerase into normal human cells. Science. 1998;279(12):349-352.
9. Woo RA, Poon RY. Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev. 2004;18(4):152-164 .
10. Poele T, Okorokov RH, Jardine AT, Cummings L. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62(12):1876–1883.
11. Murata Y. Death-associated protein 3 regulates cellular senescence through oxidative stress response. FEBS Lett. 2006;580:6093–6099.
12. Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 2001;11(7):27–31.
13. Gil J, Peters G. Regulation of the INK4β–ARF–INK4α tumour suppressor locus: all for one or one for all. Nature Rev. Mol. Cell Biol. 2006;7:667–677.
14. Dimri GP, Lee X, Basile X, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens E, Rubelj I, Pereira-Smith O. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. PNAS. 1995;92(16):9363–9367.
15. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. JCS. 2000;113(20):3613-3622.
16. Tilak JC, Boloor KK, Ketaki S, Saroj G, Lele RD. Free Radicals and Antioxidants in Human Health: Current Status and Future Prospects. Journal of Association of Physicians of India 2004;52(12): 796-803.
17. Rodgers ME. The child patient and consent to treatment: legal overview. Br J Community Nurs. 2000;5(10):494-498.
18. Griendling KK, Harrison DG. Dual role of reactive oxygen species in vascular growth. Circ Res. 1999;85(6):562-563.
19. Lee K, Esselman WJ. Inhibition of PTPs by H2O2 regulates the activation of distinct MAPK pathways. Free Radic Biol Med. 2002;33(8):1121-1132.
20. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993;91(6):2546-2551.
21. White CR, Darley-Usmar V, Berrington WR, McAdams M, Gore JZ, Thompson JA, Parks DA, Tarpey MM, Freeman BA. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci U S A. 1996;93(16):8745-8749.
22. Frippiat C, Chen QM, Remacle J, Toussaint O. Cell cycle regulation in H2O2- induced premature senescence of human diploid fibroblasts and regulatory control exerted by the papilloma virus E6 and E7 proteins. Exp. Gerontol. 2000;35(13):733-745.
23. Mueller CF, Laude K, McNally JS, Harrison DG. ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol. 2005;25(2):274-278.
24. Irani K. Oxidant signaling in vascular cell growth, death, and survival : a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res. 2000;87(3):179-183.
25. Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep. 2000;2(1):98-105.
26. Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD, Ames BN. Molecular analysis of H2O2-induced senescent- like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 1998;332(1):43–50.
27. Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(1):23-28.
28. Cross AR, Segal AW. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim Biophys Acta. 2004;1657(1):1-22.
29. Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, Krause KH. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 2000;287(5450):138-142.
30. Lambeth JD, Cheng G, Arnold RS, Edens WA. Novel homologs of gp91phox. Trends Biochem Sci. 2000;25(10):459-461.
31. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401(6748):79-82.
32. Ambasta RK, Schreiber JG, Janiszewski M, Busse R, Brandes RP. Noxa1 is a central component of the smooth muscle NADPH oxidase in mice. Free Radic Biol Med. 2006;41(2):193-201.
33. Geiszt M, Lekstrom K, Witta J, Leto TL. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem. 2003;278(22):20006-20012.
34. Cheng G, Cao Z, Xu X, Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 2001;269(1-2):131-140.
35. Ellmark SH, Dusting GJ, Fui MN, Guzzo-Pernell N, Drummond GR. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res. 2005;65(2):495-504.
36. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation. 2004;109(2):227-233.
37. Mueller CF, Laude K, McNally JS, Harrison DG. ATVB in focus: redox mechanisms in blood vessels. ATVB. 2005;25(2):274-278.
38. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus.Circ Res. 2001; 88(7):14-22.
39. Judkins CP, Diep H, Broughton BR, Mast AE, Hooker EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG, Drummond GR. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol. 2009;10(3):1152-1161.
40. Sheehan AL, Carrell S, Johnson B, Stanic B, Banfi B, Miller FJ. Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis. 2011;216(2):321–326.
41. Campbell NA, Williamson B, Robin J. Massachusetts: Pearson Prentice Hall. Biology: Exploring Life. 2006;ISBN:0-13-250882-6.
42. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr. Biol. 2006;16(14): 45-51.
43. Gropen TI, Prohovnik I, Tatemichi TK, Hirano M. Cerebral hyperemia in MELAS. Stroke. 1994;25(9):1873-1876.
44. Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M, Osame M, Tanaka H. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation. 1995;91(4):955-961.
45. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci. 1994;91(23):10771-10778.
46. Zeviani M, Donato S. Mitochondrial disorders. Brain. 2004;127(4):2153-72.
47. Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M, Osame M, Tanaka H. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation. 1995;91(4):955-961.
48. Richter C, Park J, Ames BN. Normal Oxidative Damage to Mitochondrial and Nuclear DNA is Extensive. PNAS. 1988; 85 (17): 6465–6467.
49. Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.1956;11(3):298–300.
50. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. PNAS. 2005;102(50):179-187.
51. Danser AH. Local renin-angiotensin systems. Mol Cell Biochem. 1996;157(1-2):211-216.
52. Dzau VJ. Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens. 1989;7(12):933-936.
53. Henriksen EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M. Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension. 2001;38(4):884-890.
54. Igarashi M, Hirata A, Yamaguchi H, Tsuchiya H, Ohnuma H, Tominaga M, Daimon M, Kato T. Candesartan inhibits carotid intimal thickening and ameliorates insulin resistance in balloon-injured diabetic rats. Hypertension. 2001;38(6):1255-1259.
55. Schiffrin EL, Park JB, Intengan HD, Touyz RM. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation. 2000;101(14):1653-1659.
56. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996;97(8):1916-1923.
57. Li D, Yang B, Philips MI, Mehta JL. Proapoptotic effects of ANG II in human coronary artery endothelial cells: role of AT1 receptor and PKC activation. Am J Physiol. 1999;276(3):786-792.
58. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM. Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res. 1997;81(6):970-976.
59. Keidar S, Kaplan M, Hoffman A, Aviram M. Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins. Atherosclerosis. 1995;115(2):201-215.
60. Hanna IR, Taniyama Y, Szocs K, Rocic P, Griendling KK. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal. 2002;4(2):899 –914.
61. Weber DS, Rocic P, Mellis AM, Laude K, Lyle AN, Harrison DG, Griendling KK. Angiotensin II-induced hypertrophy is potentiated inmice overexpressing p22phox in vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2005;288(13):37-42.
62. Kunieda T, Minamino T, Nishi JI, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S, Komuro I. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation. 2006;144(9):953-960.
63. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circulation Research 2008, 102(7):201-208.
64. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension. 2005;45(3):438-444.
65. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88(6):529 –535.
66. Kumazaki T, Kobayashi M, Mitsui Y. Enhanced expression of fibronectin during in vivo cellular aging of human vascular endothelial cells and skin fibroblasts. Exp Cell Res. 1993;205(2):396-402.
67. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Suzuki T, Maeta H, Abe Y. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension. 2005;45(5):860-866.
68. Kunieda T, Minamino T, Nishi J, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S, Komuro I. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation. 2006;114(9):953-960.
69. Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD, Ames BN. Molecular analysis of H2O2-induced senescent- like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 1998;332 (1): 43 –50.
70. Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res. 2004;94(6):768-775.
71. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res. 2008;102(2):201-208.
72. Touyz RM, Briones AM, Sedeek M, Burger D, Montezano AC. NOX Isoforms and Reactive Oxygen Species in Vascular Health. MI. 2008 ;11(1): 27-35.
73. Schilder YD, Heiss EH, Schachner D, Ziegler J, Reznicek G, Sorescu D, Dirsch VM. NADPH oxidases 1 and 4 mediate cellular senescence induced by resveratrol in human endothelial cells. Free Radic Biol Med. 2009;46(12):1598-1606.
74. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation. 2004;109(2):227-233.
75. Ellmark SH, Dusting GJ, Fui MN, Pernell GN, Drummond GR. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res. 2005;65(2):495-504.
76. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II_mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ. Res. 2008;102;488-496
77. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, Murphy MP, Dominiczak AF. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54(12):322-328
78. Plecitá-Hlavatá L; Jezek J; Jezek P. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Int J Biochem Cell Biol. 2009;41(8-9):1697-707.
79. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972; 20(4) :145-147.