簡易檢索 / 詳目顯示

研究生: 陳炳豪
Chen, Bing-Hao
論文名稱: 層狀複合微型樑熱彈性阻尼分析
Analysis of Thermoelastic Damping in Laminated Composite Microbeams
指導教授: 李旺龍
Li, Wang-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 熱彈性阻尼厚樑Timoshenko橫向等向性材料懸臂樑
外文關鍵詞: Thermoelastic Damping, Thick Beam, Timoshenko, Transversely Isotropic Material, Cantilever Beam
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著航空產業的蓬勃發展,為了增加飛行的安全性,對於飛機上的自動駕駛儀的性能要求也逐漸提升,由於自動駕駛儀中連接了許多微機電感測元件,然而在飛機機身中卻有許多高溫環境,如發電機周圍。為了使諧振器仍具有良好的準確度和穩定性,因此必須深入了解在不同溫度下,諧振器振盪過程中,應變場與溫度場不同相位時造成的能量耗散現象。
    本研究建立Timoshenko微型樑熱彈性阻尼模型,分析橫向等向性彈性參數: E_p、E_z、u_p、u_z和G_{pz}的影響。分為四個部分討論:第一、穩態分析中了解Timoshenko懸臂樑在自由端端點受到z軸方向向下力時的變形程度,得知厚度方向的楊氏模數(E_z)與蒲松比(u_z)影響很小,第二、單層熱彈性阻尼分析中主要討論另外三個彈性參數帶來的影響影響,第三、雙層熱彈性阻尼分析中討論橫向等向性影響因子在不同的體積分率下時的影響,第四、三層熱彈性阻尼分析中探討影響因子分佈在不同的位置下時的表現。
    從模擬結果可以得知,由於振盪過程中幾乎沒有厚度方向上的變形,再加上研究中探討為厚短樑與高特徵頻率下,剪應力作用明顯,因此主要是探討等向性平面楊氏模數、等向性平面蒲松比和剪切模數對於位移和熱彈性阻尼造成影響程度分析。

    The thermoelastic damping model of Timoshenko microbeam is established, and the influence of transversely isotropic elastic modulus is an important topic. First, the steady-state analysis shows the degree of deformation of Timoshenko cantilever beam, and Young's modulus and Poisson ratio in the thickness direction have little influence. Therefore, thermoelastic damping is only related to the other elastic modulus. The double-layer thermoelastic damping analysis discusses the influence of the volume fraction of transversely isotropic elastic modulus. Lastly, the triple-layer thermoelastic damping analysis shows the influence of the elastic modulus in different positions.
    In the study, Young’s modulus and Poisson ratio of the isotropic plane and shear modulus are analysized under displacement and thermoelastic damping. The effect of shear stress is only significant on Timoshenko beam and high eigenfrequencies.

    中文摘要 I 目錄 XIV 表目錄 XVII 圖目錄 XVIII 符號總表 XXI 第一章 緒論 1 1.1前言 1 1.2文獻回顧 6 1.2.1熱彈性阻尼 6 1.2.2橫向等向性材料 11 1.3研究動機與目的 13 1.4論文架構 14 第二章 研究理論 16 2.1彈性變形方程式 16 2.1.1廣義彈性矩陣 16 2.1.2橫向等向性彈性矩陣 18 2.2二維彈性理論 22 2.2.1平面應力 22 2.2.1平面應變 24 2.2.3平面應力和平面應變關係轉換 26 2.3熱彈性能量方程式推導 27 2.4懸臂樑特徵方程式 31 2.4.1特徵頻率方程式 31 2.4.1穩態位移方程式 34 2.4.2熱彈性阻尼方程式 38 2.4.3特徵值、特徵頻率和品質因子的相互關係 41 第三章 數值分析 42 3.1有限元素分析法 42 3.1.1數值分析求解流程 43 3.2模擬分析流程 45 3.3網格測試 47 第四章 模擬結果與分析探討 51 4.1模型驗證 51 4.1.1等向性懸臂樑模型 51 4.1.2橫向等向性懸臂樑模型 54 4.2懸臂樑穩態分析探討 55 4.2.1平面應力與平面應變分析 55 4.2.2橫向等向性因子對懸臂樑位移影響 58 4.3懸臂樑熱彈性阻尼模型分析 63 4.3.1平面應力與平面應變分析 66 4.3.2等向性平面的楊氏模數影響 67 4.3.3厚度方向楊氏模數影響 69 4.3.4剪切模數影響 71 4.3.5等向性平面蒲松比影響 73 4.3.6厚度方向蒲松比影響 74 4.4雙層結構熱彈性阻尼在不同振動模態模型分析 77 4.4.1橫向等向性因子對雙層結構懸臂樑影響 77 4.4.2尺寸效應 82 4.5三層結構熱彈性阻尼在不同振動模態模型分析 85 4.5.1橫向等向性因子對三層結構懸臂樑影響 85 4.5.2尺寸效應 89 第五章 結論與展望 92 5.1結論 92 5.2未來展望 94 參考文獻 95 附錄A: Euler樑和Timoshenko樑運動方程式推導 98 附錄B: Timoshenko樑模型驗證 102 附錄C: 文獻[13]等向性LR模型驗證推導過程 104

    [1]. B. Ilic, Y. Yang, and H.G. Craighead, “Virus detection using nanoelectromechanical devices,” Apply Physics Letters, vol. 85, no. 13, pp. 2604-2606, 2004.
    [2]. H. Campanella, Acoustic Wave and Electromechanical Resonators, 2010.
    [3]. M. Imboden and P. Mohanty, “Dissipation in nanoelectromechanical systems,’’ Physics Reports-Review Section of Physics Letters, vol. 534, no. 3, pp. 89-146, 2014.
    [4]. J. E. Bishop and V.K. Kinra, “Elastothermodynamic damping in laminated composites,” International Journal of Solids and Structures, vol. 34, no. 9, pp. 1075-1092, 1997.
    [5]. Z. Y. Zhong, J. P. Zhou, and H. L. Zhang, “Thermoelastic dampingin functionally graded microbeam resonators,” IEEE Sensors Journal, vol. 17, no. 11, pp. 3381–3390, 2017.
    [6]. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 1959.
    [7]. T. V. Roszhart, “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators,” IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, 1990.
    [8]. S. Reid, G. Cagnoli, and DRM. Crooks, “Mechanical dissipation in silicon flexures,’’ Physics Letters A, vol. 351, no. 4-5, pp. 205-211, 2006.
    [9]. G. Sosale, K. Das, and L. Frechette, “Controlling damping and quality factors of silicon microcantilevers by selective metallization,’’ Journal of Micromechanics and Microengineering, vol. 21, no. 10, 2011.
    [10]. S. Prabhakar and S. Vengallatore, “Thermoelastic damping in bilayered micromechanical beam resonators,’’Journal of micromechanics and microengineering, vol. 17, no. 3, pp. 532-538, 2007.
    [11]. S. Vengallatore, “Analysis of thermoelastic damping in laminated composite micromechanical beam resonators,’’Journal of micromechanics and microengineering, vol. 15, no. 12, pp. 2398-2404, 2005.
    [12]. S. Kumar and M. A. Haque, “Reduction of thermo-elastic damping with a secondary elastic field,’’ Journal of Sound and Vibration, vol. 318, no. 3, pp. 423-427, 2008.
    [13]. C. Zener, “Internal Friction in Solids. I. Theory of Internal Friction in Reeds, ” Physical Review, vol. 52, no. 3, pp. 230-235, 1937.
    [14]. C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,’’ Physical Review, vol. 52, no. 1, pp. 90-99, 1938.
    [15]. R. Lifshitz and ML.Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Physical Review B, vol. 61, no. 8, pp. 5600-5609, 2000.
    [16]. S. Prabhakar and S. Vengallatore, “Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction,’’ Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 494-502, 2008.
    [17]. C. Catteneo, “A form of heat conduction equation which eliminates the paradox of instantaneous propagation,” Compte Rendus, vol. 247, pp. 431–433, 1958.
    [18]. P. Vernotte, “Les paradoxes de la théorie continue de l'équation de la chaleur,” C. R. Acad. Sci, vol. 246, pp. 3154, 1958.
    [19]. M. Chester, “Second sound in solids,’’ Physical Review, vol. 131, no. 5, pp. 2013-&, 2013.
    [20]. Z. F. Khisaeva and M.Ostoja-Starzewski, “Thermoelastic damping in nanomechanical resonators with finite wave speeds” Journal of Thermal Stresses, vol. 29, no. 3, pp. 201-216, 2006.
    [21]. F. L. Guo, “Thermo-elastic dissipation of microbeam resonators in the framework of generalized thermo-elasticity theory,” Journal of Thermal Stresses, vol. 36, no. 11, pp. 1156-1168, 2013.
    [22]. HY. Zhou and P. Li, “Thermoelastic damping in micro- and nanobeam resonators with non-fourier heat conduction,” IEEE Sensors Journal, vol. 17, no. 21, pp. 6966-6977, 2017.
    [23]. CV. Massalas and VK. Kalpakidis, “Coupled thermoelastic vibration of a timoshenko beam,” International Journal of Engineering Science, vol. 22, no. 4, pp. 495-465, 1984.
    [24]. S. Abbasion, A. Rafsanjani, and R. Avazmohammadi, “Free vibration of microscaled Timoshenko beams,” Applied Physics Letters, vol. 95, no. 14, 2009.
    [25]. CM. Wang, “Timoshenko beam-bending solutions in terms of euler bernoulli solutions,” Journal of Engineering Mechanics-ASCE, vol. 121, no. 6, pp. 763-765, 1995.
    [26]. A. A. Emami and A. Alibeigloo, “Exact solution for thermal damping of functionally graded Timoshenko microbeams,” Journal of Thermal Stresses, vol. 39, no. 2, pp. 231-243, 2016.
    [27]. DV. Parayil, SS. Kulkarni, and DN. Pawaskar, “Analytical and numerical solutions for thick beams with thermoelastic damping,” International Journal of Mechanical Sciences, vol. 94-95, pp. 10-19, 2015.
    [28]. L. Li and CT. Hao, “Constraints on Anisotropic Parameters in Transversely Isotropic Media and the Extensions to Orthorhombic Media,” Chinese Journal of Geophysics- Chinese Edition, vol. 54, no. 11, pp. 2819-2830, 2011.
    [29]. J.N.Sharma, “Thermoelastic Damping and Frequency Shift in Micro/Nanoscale Anisotropic Beams,” Journal of Thermal Stresses, vol. 34, no. 7, pp. 650-666, 2011.
    [30]. D. Grover and JN. Sharma, “Transverse vibrations in piezothermoelastic beam resonators,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 1, pp. 77-84, 2012.
    [31]. D. Grover, “Clamped-free micro-scale transversely isotropic thermoelastic beam resonators,” Microsystem Technologies Micro and Nanosystems Information Storage and Processing Systems, vol. 25, no. 11, pp. 4269-4276, 2019.
    [32]. H. E. Rosinger and I. G. Ritchie, “ On Timoshenko's correction for shear in vibrating isotropic beams,’’ Journal of Physics D: Applied Physics, vol. 10, no. 11, 1977.
    [33]. G. Kress and C. Thurnherr, “Bending stiffness of transversal isotropic materials,’’ Composite Structure, vol. 176, pp. 692-701, 2017.
    [34]. CL. Li, SQ. Gao, SH. Niu, and HP. Liu, “ Thermoelastic coupling effect analysis for gyroscope resonator from longitudinal and flexural vibrations,” Microsystem Technologies Micro and Nanosystems Information Storage and Processing Systems, vol. 22, no. 5, pp. 1029-1042, 2016.
    [35]. S. Timoshenko, Vibration Problems in Engineering, 1937.

    下載圖示 校內:2025-08-26公開
    校外:2025-08-26公開
    QR CODE