| 研究生: |
吳洺妤 Wu, Ming-Yu |
|---|---|
| 論文名稱: |
探討胰腺導管腺癌利用初級纖毛促進脂肪酸轉位酶表達與脂肪酸攝取以增強順鉑化療抗性之研究 Primary cilia-mediated upregulation of CD36 and fatty acid uptake promote cisplatin resistance in pancreatic ductal adenocarcinoma |
| 指導教授: |
彭怡禎
Peng, I-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 初級纖毛 、胰腺導管腺癌 、分化簇36(CD36) 、順鉑抗藥性 |
| 外文關鍵詞: | Primary cilia, Pancreatic ductal adenocarcinoma (PDAC), Cluster of differentiation 36 (CD36), Cisplatin resistance |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
初級纖毛是由微管組成的一種非運動性的胞器,從基體延伸至細胞表面,在感知和細胞內信號傳導中發揮關鍵作用。在胰腺導管腺癌(PDAC)中,初級纖毛的丟失是一種常見現象,但有研究發現,在順鉑治療後的 PDAC 與順鉑抗藥性的 PDAC 皆有發現初級纖毛再生的現象,暗示初級纖毛可能有參與順鉑化療抗藥的機制。然而,癌細胞經常重新編程其脂質代謝以滿足快速生長和增殖的條件需求,抑或適應不良環境,有研究指出由初級纖毛介導的 Hedgehog 訊號通路會抑制脂質重頭生成路徑,另外,我們先前的研究得知麩醯胺酸合成酶(GS)和脂質代謝有關,但在 PDAC 中初級纖毛、GS 與脂質代謝改變相關的調控機制及其在順鉑化療敏感性中的連結仍不清楚。在本研究結果顯示,在經順鉑處理的 PANC-1 細胞和順鉑抗藥性的 CPTR(Cisplatin resistance) PANC-1 中,GS、初級纖毛相關的蛋白內纖毛轉運蛋白 88(IFT88)以及分化簇 36(CD36)的蛋白和基因表現量表達皆增加,並伴隨著脂肪酸攝取的增強,並且在 PANC-1 抑制 GS 表達可降低經順鉑處理後細胞的纖毛生成、CD36 表達和脂肪酸攝取,在 CPTR PANC-1 中也有相同現象。同樣地,在 PANC-1 和 CPTR PANC-1 中抑制 IFT88 也導致 CD36 表達和脂肪酸攝取的減少。此外,敲低 GS、IFT88 和 CD36 可降低 PANC-1 和 CPTR PANC-1 細胞對順鉑的半數抑制濃度(IC50),增強細胞對順鉑的敏感性。研究結果顯示,GS 促進初級纖毛的形成,進而上調CD36的表達並增強脂肪酸攝取,從而降低 PANC-1 對順鉑的敏感度,減少順鉑對 PANC-1 的治療效果。本研究提供了 GS 在調控初級纖毛、脂質代謝及 PDAC 順鉑化療抗藥中的作用的初步見解,並提出其作為潛在治療靶點的可能性。
Primary cilia, non-motile organelles composed of microtubules that extend from the basal body to the cell surface, play a critical role in sensory perception and intracellular signaling. In pancreatic ductal adenocarcinoma (PDAC), the loss of primary cilia is a common phenomenon. However, studies have observed the regeneration of primary cilia in both cisplatin-treated PDAC and cisplatin-resistant PDAC, suggesting that primary cilia may be involved in the mechanisms of cisplatin resistance. Cancer cells frequently reprogram their lipid metabolism to meet the demands of rapid growth and proliferation or adapt to adverse environmental conditions. Notably, the primary cilia-mediated Hedgehog signaling pathway has been reported to suppress the de novo lipogenesis pathway. Our previous findings revealed that glutamine synthetase (GS) is associated with lipid metabolism, but the regulatory mechanisms linking primary cilia, GS, and altered lipid metabolism to cisplatin sensitivity in PDAC remain unclear.In this study, we demonstrated that both cisplatin-treated PANC-1 cells and cisplatin-resistant CPTR PANC-1 cells exhibited increased protein and gene expression levels of GS, the primary cilia-associated protein intraflagellar transport protein 88 (IFT88), and cluster of differentiation 36 (CD36), accompanied by enhanced fatty acid uptake. Knockdown of GS in PANC-1 cells reduced ciliogenesis, CD36 expression, and fatty acid uptake following cisplatin treatment, and the same phenomenon was observed in CPTR PANC-1 cells. Similarly, knockdown of IFT88 in both PANC-1 and CPTR PANC-1 cells led to a decrease in CD36 expression and fatty acid uptake. Furthermore, knockdown of GS, IFT88, and CD36 reduced the half-maximal inhibitory concentration (IC50) of cisplatin in both PANC-1 and CPTR PANC-1 cells, thereby enhancing cisplatin sensitivity.These findings suggest that GS promotes the formation of primary cilia, which subsequently upregulates CD36 expression and enhances fatty acid uptake, thereby reducing the cytotoxic effects of cisplatin. This study provides preliminary insights into the role of GS in regulating primary cilia, lipid metabolism, and cisplatin resistance in PDAC, highlighting its potential as a therapeutic target.
Aberger, F., & Altaba, A. (2014, 09/01). Context-Dependent Signal Integration by the GLI Code: the Oncogenic Load, Pathways, Modifiers and Implications for Cancer Therapy. Seminars in Cell & Developmental Biology, 33. https://doi.org/10.1016/j.semcdb.2014.05.003
Altman, B. J., Stine, Z. E., & Dang, C. V. (2016, Nov). From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer, 16(11), 749. https://doi.org/10.1038/nrc.2016.114
Bailey, J. M., Swanson, B. J., Hamada, T., Eggers, J. P., Singh, P. K., Caffery, T., Ouellette, M. M., & Hollingsworth, M. A. (2008, Oct 1). Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res, 14(19), 5995-6004. https://doi.org/10.1158/1078-0432.Ccr-08-0291
Basten, S. G., Willekers, S., Vermaat, J. S., Slaats, G. G., Voest, E. E., van Diest, P. J., & Giles, R. H. (2013, Jan 31). Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia, 2(1), 2. https://doi.org/10.1186/2046-2530-2-2
Beloribi-Djefaflia, S., Vasseur, S., & Guillaumond, F. (2016, 2016/01/01). Lipid metabolic reprogramming in cancer cells. Oncogenesis, 5(1), e189-e189. https://doi.org/10.1038/oncsis.2015.49
Berman, D. M., Karhadkar, S. S., Hallahan, A. R., Pritchard, J. I., Eberhart, C. G., Watkins, D. N., Chen, J. K., Cooper, M. K., Taipale, J., Olson, J. M., & Beachy, P. A. (2002, Aug 30). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 297(5586), 1559-1561. https://doi.org/10.1126/science.1073733
Bott, A. J., Peng, I. C., Fan, Y., Faubert, B., Zhao, L., Li, J., Neidler, S., Sun, Y., Jaber, N., Krokowski, D., Lu, W., Pan, J. A., Powers, S., Rabinowitz, J., Hatzoglou, M., Murphy, D. J., Jones, R., Wu, S., Girnun, G., & Zong, W. X. (2015, Dec 1). Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation. Cell Metab, 22(6), 1068-1077. https://doi.org/10.1016/j.cmet.2015.09.025
Cao, M., Li, G., & Pan, J. (2009). Chapter 17 - Regulation of Cilia assembly, Disassembly, and Length by Protein Phosphorylation. In R. D. Sloboda (Ed.), Methods in Cell Biology (Vol. 94, pp. 333-346). Academic Press. https://doi.org/https://doi.org/10.1016/S0091-679X(08)94017-6
Chao, Y.-Y., Huang, B.-M., Peng, I.-C., Lee, P.-R., Lai, Y.-S., Chiu, W.-T., Lin, Y.-S., Lin, S.-C., Chang, J.-H., Chen, P.-S., Tsai, S.-J., & Wang, C.-Y. (2022). ATM- and ATR-induced primary ciliogenesis promotes cisplatin resistance in pancreatic ductal adenocarcinoma. Journal of Cellular Physiology, 237(12), 4487-4503. https://doi.org/https://doi.org/10.1002/jcp.30898
Christensen, S. T., Pedersen, L. B., Schneider, L., & Satir, P. (2007, Feb). Sensory cilia and integration of signal transduction in human health and disease. Traffic, 8(2), 97-109. https://doi.org/10.1111/j.1600-0854.2006.00516.x
Cueva, J. G., Hsin, J., Huang, K. C., & Goodman, M. B. (2012, Jun 19). Posttranslational acetylation of α-tubulin constrains protofilament number in native microtubules. Curr Biol, 22(12), 1066-1074. https://doi.org/10.1016/j.cub.2012.05.012
Currie, E., Schulze, A., Zechner, R., Walther, T. C., & Farese, R. V., Jr. (2013, Aug 6). Cellular fatty acid metabolism and cancer. Cell Metab, 18(2), 153-161. https://doi.org/10.1016/j.cmet.2013.05.017
Dasari, S., & Tchounwou, P. B. (2014, Oct 5). Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol, 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
Dauer, P., Nomura, A., Saluja, A., & Banerjee, S. (2017, Jan-Feb). Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters. Pancreatology, 17(1), 7-12. https://doi.org/10.1016/j.pan.2016.12.010
DeBerardinis, R. J., & Cheng, T. (2010, Jan 21). Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29(3), 313-324. https://doi.org/10.1038/onc.2009.358
Drury, J., Rychahou, P. G., He, D., Jafari, N., Wang, C., Lee, E. Y., Weiss, H. L., Evers, B. M., & Zaytseva, Y. Y. (2020). Inhibition of Fatty Acid Synthase Upregulates Expression of CD36 to Sustain Proliferation of Colorectal Cancer Cells. Front Oncol, 10, 1185. https://doi.org/10.3389/fonc.2020.01185
Edge, S. B., & Compton, C. C. (2010, Jun). The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol, 17(6), 1471-1474. https://doi.org/10.1245/s10434-010-0985-4
Fardini, Y., Dehennaut, V., Lefebvre, T., & Issad, T. (2013). O-GlcNAcylation: A New Cancer Hallmark? Front Endocrinol (Lausanne), 4, 99. https://doi.org/10.3389/fendo.2013.00099
Feng, W. W., Wilkins, O., Bang, S., Ung, M., Li, J., An, J., Del Genio, C., Canfield, K., DiRenzo, J., Wells, W., Gaur, A., Robey, R. B., Guo, J. Y., Powles, R. L., Sotiriou, C., Pusztai, L., Febbraio, M., Cheng, C., Kinlaw, W. B., & Kurokawa, M. (2019, Dec 10). CD36-Mediated Metabolic Rewiring of Breast Cancer Cells Promotes Resistance to HER2-Targeted Therapies. Cell Rep, 29(11), 3405-3420.e3405. https://doi.org/10.1016/j.celrep.2019.11.008
Feng, W. W., Zuppe, H. T., & Kurokawa, M. (2023, Jun 11). The Role of CD36 in Cancer Progression and Its Value as a Therapeutic Target. Cells, 12(12). https://doi.org/10.3390/cells12121605
Ferrer, C. M., Sodi, V. L., & Reginato, M. J. (2016, Aug 14). O-GlcNAcylation in Cancer Biology: Linking Metabolism and Signaling. J Mol Biol, 428(16), 3282-3294. https://doi.org/10.1016/j.jmb.2016.05.028
Gaujoux, S., Brennan, M. F., Gonen, M., D'Angelica, M. I., DeMatteo, R., Fong, Y., Schattner, M., DiMaio, C., Janakos, M., Jarnagin, W. R., & Allen, P. J. (2011, Apr). Cystic lesions of the pancreas: changes in the presentation and management of 1,424 patients at a single institution over a 15-year time period. J Am Coll Surg, 212(4), 590-600; discussion 600-593. https://doi.org/10.1016/j.jamcollsurg.2011.01.016
Glatz, J. F., & Luiken, J. J. (2017, May). From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake. Biochimie, 136, 21-26. https://doi.org/10.1016/j.biochi.2016.12.007
Hanover, J. A., Krause, M. W., & Love, D. C. (2012, 2012/05/01). linking metabolism to epigenetics through O-GlcNAcylation. Nature Reviews Molecular Cell Biology, 13(5), 312-321. https://doi.org/10.1038/nrm3334
Hart, G. W., Slawson, C., Ramirez-Correa, G., & Lagerlof, O. (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem, 80, 825-858. https://doi.org/10.1146/annurev-biochem-060608-102511
Hassounah, N. B., Bunch, T. A., & McDermott, K. M. (2012, May 1). Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res, 18(9), 2429-2435. https://doi.org/10.1158/1078-0432.Ccr-11-0755
Hassounah, N. B., Nagle, R., Saboda, K., Roe, D. J., Dalkin, B. L., & McDermott, K. M. (2013). Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS One, 8(7), e68521. https://doi.org/10.1371/journal.pone.0068521
He, K., Ma, X., Xu, T., Li, Y., Hodge, A., Zhang, Q., Torline, J., Huang, Y., Zhao, J., Ling, K., & Hu, J. (2018, Aug 17). Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat Commun, 9(1), 3310. https://doi.org/10.1038/s41467-018-05867-1
Hidalgo, M., Cascinu, S., Kleeff, J., Labianca, R., Löhr, J. M., Neoptolemos, J., Real, F. X., Van Laethem, J.-L., & Heinemann, V. (2015, 2015/01/01/). Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology, 15(1), 8-18. https://doi.org/https://doi.org/10.1016/j.pan.2014.10.001
Hildebrandt, F., Benzing, T., & Katsanis, N. (2011, Apr 21). Ciliopathies. N Engl J Med, 364(16), 1533-1543. https://doi.org/10.1056/NEJMra1010172
Hong, S. R., Wang, C. L., Huang, Y. S., Chang, Y. C., Chang, Y. C., Pusapati, G. V., Lin, C. Y., Hsu, N., Cheng, H. C., Chiang, Y. C., Huang, W. E., Shaner, N. C., Rohatgi, R., Inoue, T., & Lin, Y. C. (2018, Apr 30). Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun, 9(1), 1732. https://doi.org/10.1038/s41467-018-03952-z
Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L., & Anderson, K. V. (2003, 2003/11/01). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962), 83-87. https://doi.org/10.1038/nature02061
Ingham, P. W., & McMahon, A. P. (2001, Dec 1). Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 15(23), 3059-3087. https://doi.org/10.1101/gad.938601
Ireland, L., Santos, A., Ahmed, M. S., Rainer, C., Nielsen, S. R., Quaranta, V., Weyer-Czernilofsky, U., Engle, D. D., Perez-Mancera, P. A., Coupland, S. E., Taktak, A., Bogenrieder, T., Tuveson, D. A., Campbell, F., Schmid, M. C., & Mielgo, A. (2016, Dec 1). Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors. Cancer Res, 76(23), 6851-6863. https://doi.org/10.1158/0008-5472.Can-16-1201
Ishikawa, H., & Marshall, W. F. (2011, 2011/04/01). Ciliogenesis: building the cell's antenna. Nature Reviews Molecular Cell Biology, 12(4), 222-234. https://doi.org/10.1038/nrm3085
Jiang, L., Shestov, A. A., Swain, P., Yang, C., Parker, S. J., Wang, Q. A., Terada, L. S., Adams, N. D., McCabe, M. T., Pietrak, B., Schmidt, S., Metallo, C. M., Dranka, B. P., Schwartz, B., & DeBerardinis, R. J. (2016, 2016/04/01). Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 532(7598), 255-258. https://doi.org/10.1038/nature17393
Kasahara, K., Kawakami, Y., Kiyono, T., Yonemura, S., Kawamura, Y., Era, S., Matsuzaki, F., Goshima, N., & Inagaki, M. (2014, Oct 1). Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat Commun, 5, 5081. https://doi.org/10.1038/ncomms6081
Kayed, H., Kleeff, J., Keleg, S., Guo, J., Ketterer, K., Berberat, P. O., Giese, N., Esposito, I., Giese, T., Büchler, M. W., & Friess, H. (2004). Indian hedgehog signaling pathway: Expression and regulation in pancreatic cancer. International Journal of Cancer, 110(5), 668-676. https://doi.org/https://doi.org/10.1002/ijc.20194
Kayed, H., Kleeff, J., Osman, T., Keleg, S., Büchler, M. W., & Friess, H. (2006). Hedgehog Signaling in the Normal and Diseased Pancreas. Pancreas, 32(2). https://journals.lww.com/pancreasjournal/fulltext/2006/03000/hedgehog_signaling_in_the_normal_and_diseased.1.aspx
Kubo, M., Gotoh, K., Eguchi, H., Kobayashi, S., Iwagami, Y., Tomimaru, Y., Akita, H., Asaoka, T., Noda, T., Takeda, Y., Tanemura, M., Mori, M., & Doki, Y. (2020, 2020/02/01). Impact of CD36 on Chemoresistance in Pancreatic Ductal Adenocarcinoma. Annals of Surgical Oncology, 27(2), 610-619. https://doi.org/10.1245/s10434-019-07927-2
Kuhn, K. S., Schuhmann, K., Stehle, P., Darmaun, D., & Fürst, P. (1999, Oct). Determination of glutamine in muscle protein facilitates accurate assessment of proteolysis and de novo synthesis-derived endogenous glutamine production. Am J Clin Nutr, 70(4), 484-489. https://doi.org/10.1093/ajcn/70.4.484
Kung, H. N., Marks, J. R., & Chi, J. T. (2011, Aug). Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet, 7(8), e1002229. https://doi.org/10.1371/journal.pgen.1002229
Kunovsky, L., Tesarikova, P., Kala, Z., Kroupa, R., Kysela, P., Dolina, J., & Trna, J. (2018). The Use of Biomarkers in Early Diagnostics of Pancreatic Cancer. Canadian Journal of Gastroenterology and Hepatology, 2018(1), 5389820. https://doi.org/https://doi.org/10.1155/2018/5389820
Lekka, K., Tzitzi, E., Giakoustidis, A., Papadopoulos, V., & Giakoustidis, D. (2019, May). Contemporary management of borderline resectable pancreatic ductal adenocarcinoma. Ann Hepatobiliary Pancreat Surg, 23(2), 97-108. https://doi.org/10.14701/ahbps.2019.23.2.97
Lewis, A. R., Valle, J. W., & McNamara, M. G. (2016, Aug 28). Pancreatic cancer: Are "liquid biopsies" ready for prime-time? World J Gastroenterol, 22(32), 7175-7185. https://doi.org/10.3748/wjg.v22.i32.7175
Li, Y. J., Fahrmann, J. F., Aftabizadeh, M., Zhao, Q., Tripathi, S. C., Zhang, C., Yuan, Y., Ann, D., Hanash, S., & Yu, H. (2022, May 31). Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep, 39(9), 110870. https://doi.org/10.1016/j.celrep.2022.110870
Li, Z., Liao, X., Hu, Y., Li, M., Tang, M., Zhang, S., Mo, S., Li, X., Chen, S., Qian, W., Feng, R., Yu, R., Xu, Y., Yuan, S., Xie, C., & Li, J. (2023, May 20). SLC27A4-mediated selective uptake of mono-unsaturated fatty acids promotes ferroptosis defense in hepatocellular carcinoma. Free Radic Biol Med, 201, 41-54. https://doi.org/10.1016/j.freeradbiomed.2023.03.013
Liao, X., Yan, S., Li, J., Jiang, C., Huang, S., Liu, S., Zou, X., Zhang, G., Zou, J., & Liu, Q. (2022). CD36 and Its Role in Regulating the Tumor Microenvironment. Current Oncology, 29(11), 8133-8145. https://www.mdpi.com/1718-7729/29/11/642
Liu, M., Liu, A., Wang, J., Zhang, Y., Li, Y., Su, Y., & Zhu, A. J. (2021, Feb 1). Competition between two phosphatases fine-tunes Hedgehog signaling. J Cell Biol, 220(2). https://doi.org/10.1083/jcb.202010078
Long, H., Wang, Q., & Huang, K. (2015, Sep 2). Ciliary/Flagellar Protein Ubiquitination. Cells, 4(3), 474-482. https://doi.org/10.3390/cells4030474
Love, D. C., & Hanover, J. A. (2005, Nov 29). The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Sci STKE, 2005(312), re13. https://doi.org/10.1126/stke.3122005re13
Luna, S., Malard, F., Pereckas, M., Aoki, M., Aoki, K., & Olivier-Van Stichelen, S. (2024, Apr 10). Studying the O-GlcNAcome of human placentas using banked tissue samples. Glycobiology, 34(4). https://doi.org/10.1093/glycob/cwae005
Ma, Z., & Vosseller, K. (2013, Oct). O-GlcNAc in cancer biology. Amino Acids, 45(4), 719-733. https://doi.org/10.1007/s00726-013-1543-8
Ma, Z., & Vosseller, K. (2014, Dec 12). Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J Biol Chem, 289(50), 34457-34465. https://doi.org/10.1074/jbc.R114.577718
Marshall, S., Bacote, V., & Traxinger, R. R. (1991, Mar 15). Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem, 266(8), 4706-4712.
Marullo, R., Werner, E., Degtyareva, N., Moore, B., Altavilla, G., Ramalingam, S. S., & Doetsch, P. W. (2013). Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One, 8(11), e81162. https://doi.org/10.1371/journal.pone.0081162
Matz-Soja, M., Rennert, C., Schönefeld, K., Aleithe, S., Boettger, J., Schmidt-Heck, W., Weiss, T. S., Hovhannisyan, A., Zellmer, S., Klöting, N., Schulz, A., Kratzsch, J., Guthke, R., & Gebhardt, R. (2016, May 17). Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. Elife, 5. https://doi.org/10.7554/eLife.13308
Matz-Soja, M., Rennert, C., Schönefeld, K., Aleithe, S., Boettger, J., Schmidt-Heck, W., Weiss, T. S., Hovhannisyan, A., Zellmer, S., Klöting, N., Schulz, A., Kratzsch, J., Guthke, R., & Gebhardt, R. (2016, 2016/05/17). Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. Elife, 5, e13308. https://doi.org/10.7554/eLife.13308
May, E. A., Sroka, T. J., & Mick, D. U. (2021). Phosphorylation and Ubiquitylation Regulate Protein Trafficking, Signaling, and the Biogenesis of Primary Cilia. Front Cell Dev Biol, 9, 664279. https://doi.org/10.3389/fcell.2021.664279
Menzl, I., Lebeau, L., Pandey, R., Hassounah, N. B., Li, F. W., Nagle, R., Weihs, K., & McDermott, K. M. (2014). Loss of primary cilia occurs early in breast cancer development. Cilia, 3, 7. https://doi.org/10.1186/2046-2530-3-7
Mezencev, R., Matyunina, L. V., Wagner, G. T., & McDonald, J. F. (2016, Dec). Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes. Cancer Gene Ther, 23(12), 446-453. https://doi.org/10.1038/cgt.2016.71
Nath, A., Li, I., Roberts, L. R., & Chan, C. (2015, 2015/10/01). Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Scientific Reports, 5(1), 14752. https://doi.org/10.1038/srep14752
Neoptolemos, J. P., Kleeff, J., Michl, P., Costello, E., Greenhalf, W., & Palmer, D. H. (2018, 2018/06/01). Therapeutic developments in pancreatic cancer: current and future perspectives. Nature Reviews Gastroenterology & Hepatology, 15(6), 333-348. https://doi.org/10.1038/s41575-018-0005-x
Niewiadomski, P., Kong, J. H., Ahrends, R., Ma, Y., Humke, E. W., Khan, S., Teruel, M. N., Novitch, B. G., & Rohatgi, R. (2014, Jan 16). Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep, 6(1), 168-181. https://doi.org/10.1016/j.celrep.2013.12.003
Park, W., Chawla, A., & O'Reilly, E. M. (2021, Sep 7). Pancreatic Cancer: A Review. Jama, 326(9), 851-862. https://doi.org/10.1001/jama.2021.13027
Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C. S., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., Bescós, C., Di Croce, L., & Benitah, S. A. (2017, Jan 5). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541(7635), 41-45. https://doi.org/10.1038/nature20791
Pavlova, N. N., & Thompson, C. B. (2016, Jan 12). The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 23(1), 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
Pazour, G. J., & Witman, G. B. (2003, 2003/02/01/). The vertebrate primary cilium is a sensory organelle. Current Opinion in Cell Biology, 15(1), 105-110. https://doi.org/https://doi.org/10.1016/S0955-0674(02)00012-1
Pedersen, L. B., Veland, I. R., Schrøder, J. M., & Christensen, S. T. (2008). Assembly of primary cilia. Developmental Dynamics, 237(8), 1993-2006. https://doi.org/https://doi.org/10.1002/dvdy.21521
Pepino, M. Y., Kuda, O., Samovski, D., & Abumrad, N. A. (2014). Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr, 34, 281-303. https://doi.org/10.1146/annurev-nutr-071812-161220
Qin, J., Ye, L., Wen, X., Zhang, X., Di, Y., Chen, Z., & Wang, Z. (2023, 2023/09/28/). Fatty acids in cancer chemoresistance. Cancer Letters, 572, 216352. https://doi.org/https://doi.org/10.1016/j.canlet.2023.216352
Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Research, 74(11), 2913-2921. https://doi.org/10.1158/0008-5472.Can-14-0155
Raptis, D. A., Fessas, C., Belasyse-Smith, P., & Kurzawinski, T. R. (2010, 2010/10/01/). Clinical presentation and waiting time targets do not affect prognosis in patients with pancreatic cancer. The Surgeon, 8(5), 239-246. https://doi.org/https://doi.org/10.1016/j.surge.2010.03.001
Reed, N. A., Cai, D., Blasius, T. L., Jih, G. T., Meyhofer, E., Gaertig, J., & Verhey, K. J. (2006, Nov 7). Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol, 16(21), 2166-2172. https://doi.org/10.1016/j.cub.2006.09.014
Rocha, C., Papon, L., Cacheux, W., Marques Sousa, P., Lascano, V., Tort, O., Giordano, T., Vacher, S., Lemmers, B., Mariani, P., Meseure, D., Medema, J. P., Bièche, I., Hahne, M., & Janke, C. (2014, Oct 1). Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. Embo j, 33(19), 2247-2260. https://doi.org/10.15252/embj.201488466
Rohatgi, R., Milenkovic, L., & Scott, M. P. (2007, Jul 20). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836), 372-376. https://doi.org/10.1126/science.1139740
Rosenbaum, J. L., & Witman, G. B. (2002, 2002/11/01). Intraflagellar transport. Nature Reviews Molecular Cell Biology, 3(11), 813-825. https://doi.org/10.1038/nrm952
Roy, K., Jerman, S., Jozsef, L., McNamara, T., Onyekaba, G., Sun, Z., & Marin, E. P. (2017, Oct 27). Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation. J Biol Chem, 292(43), 17703-17717. https://doi.org/10.1074/jbc.M117.792937
Roy, K., & Marin, E. P. (2019, Jun 27). Lipid Modifications in Cilia Biology. J Clin Med, 8(7). https://doi.org/10.3390/jcm8070921
Rubin, L. L., & de Sauvage, F. J. (2006, 2006/12/01). Targeting the Hedgehog pathway in cancer. Nature Reviews Drug Discovery, 5(12), 1026-1033. https://doi.org/10.1038/nrd2086
Santos, C. R., & Schulze, A. (2012). Lipid metabolism in cancer. The FEBS Journal, 279(15), 2610-2623. https://doi.org/https://doi.org/10.1111/j.1742-4658.2012.08644.x
Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A. G., & Karamouzis, M. V. (2020, Feb 15). Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World J Gastrointest Oncol, 12(2), 173-181. https://doi.org/10.4251/wjgo.v12.i2.173
Satir, P., & Christensen, S. T. (2007). Overview of structure and function of mammalian cilia. Annu Rev Physiol, 69, 377-400. https://doi.org/10.1146/annurev.physiol.69.040705.141236
Seeley, E. S., Carrière, C., Goetze, T., Longnecker, D. S., & Korc, M. (2009, Jan 15). Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res, 69(2), 422-430. https://doi.org/10.1158/0008-5472.Can-08-1290
Shen, X. L., Yuan, J. F., Qin, X. H., Song, G. P., Hu, H. B., Tu, H. Q., Song, Z. Q., Li, P. Y., Xu, Y. L., Li, S., Jian, X. X., Li, J. N., He, C. Y., Yu, X. P., Liang, L. Y., Wu, M., Han, Q. Y., Wang, K., Li, A. L., Zhou, T., Zhang, Y. C., Wang, N., & Li, H. Y. (2022, Jan 3). LUBAC regulates ciliogenesis by promoting CP110 removal from the mother centriole. J Cell Biol, 221(1). https://doi.org/10.1083/jcb.202105092
Singla, V., & Reiter, J. F. (2006, Aug 4). The primary cilium as the cell's antenna: signaling at a sensory organelle. Science, 313(5787), 629-633. https://doi.org/10.1126/science.1124534
Tan, Y., Li, J., Zhao, G., Huang, K. C., Cardenas, H., Wang, Y., Matei, D., & Cheng, J. X. (2022, Aug 5). Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nat Commun, 13(1), 4554. https://doi.org/10.1038/s41467-022-32101-w
Tan, Y., Lin, H., & Cheng, J.-X. (2023). Profiling single cancer cell metabolism via high-content SRS imaging with chemical sparsity. Science Advances, 9(33), eadg6061. https://doi.org/doi:10.1126/sciadv.adg6061
Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., Qi, Y. P., Gysin, S., Fernández-del Castillo, C., Yajnik, V., Antoniu, B., McMahon, M., Warshaw, A. L., & Hebrok, M. (2003, Oct 23). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425(6960), 851-856. https://doi.org/10.1038/nature02009
Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011, Aug 13). Pancreatic cancer. Lancet, 378(9791), 607-620. https://doi.org/10.1016/s0140-6736(10)62307-0
Vocadlo, D. J. (2012, Dec). O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr Opin Chem Biol, 16(5-6), 488-497. https://doi.org/10.1016/j.cbpa.2012.10.021
Vu, L. D., Gevaert, K., & De Smet, I. (2018, Dec). Protein Language: Post-Translational Modifications Talking to Each Other. Trends Plant Sci, 23(12), 1068-1080. https://doi.org/10.1016/j.tplants.2018.09.004
Wang, J., & Li, Y. (2019). CD36 tango in cancer: signaling pathways and functions. Theranostics, 9(17), 4893-4908. https://doi.org/10.7150/thno.36037
Ware, S. M., Aygun, M. G., & Hildebrandt, F. (2011, Sep). Spectrum of clinical diseases caused by disorders of primary cilia. Proc Am Thorac Soc, 8(5), 444-450. https://doi.org/10.1513/pats.201103-025SD
Watt, M. J., Clark, A. K., Selth, L. A., Haynes, V. R., Lister, N., Rebello, R., Porter, L. H., Niranjan, B., Whitby, S. T., Lo, J., Huang, C., Schittenhelm, R. B., Anderson, K. E., Furic, L., Wijayaratne, P. R., Matzaris, M., Montgomery, M. K., Papargiris, M., Norden, S., Febbraio, M., Risbridger, G. P., Frydenberg, M., Nomura, D. K., & Taylor, R. A. (2019). Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 11(478), eaau5758. https://doi.org/doi:10.1126/scitranslmed.aau5758
Weizman, N., Krelin, Y., Shabtay-Orbach, A., Amit, M., Binenbaum, Y., Wong, R. J., & Gil, Z. (2014, 2014/07/01). Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene, 33(29), 3812-3819. https://doi.org/10.1038/onc.2013.357
Williams, J. A., Guicherit, O. M., Zaharian, B. I., Xu, Y., Chai, L., Wichterle, H., Kon, C., Gatchalian, C., Porter, J. A., Rubin, L. L., & Wang, F. Y. (2003, Apr 15). Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci U S A, 100(8), 4616-4621. https://doi.org/10.1073/pnas.0732813100
Wloga, D., Joachimiak, E., Louka, P., & Gaertig, J. (2017, Jun 1). Posttranslational Modifications of Tubulin and Cilia. Cold Spring Harb Perspect Biol, 9(6). https://doi.org/10.1101/cshperspect.a028159
Wood, L. D., Canto, M. I., Jaffee, E. M., & Simeone, D. M. (2022, Aug). Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology, 163(2), 386-402.e381. https://doi.org/10.1053/j.gastro.2022.03.056
Yang, L., Achreja, A., Yeung, T. L., Mangala, L. S., Jiang, D., Han, C., Baddour, J., Marini, J. C., Ni, J., Nakahara, R., Wahlig, S., Chiba, L., Kim, S. H., Morse, J., Pradeep, S., Nagaraja, A. S., Haemmerle, M., Kyunghee, N., Derichsweiler, M., Plackemeier, T., Mercado-Uribe, I., Lopez-Berestein, G., Moss, T., Ram, P. T., Liu, J., Lu, X., Mok, S. C., Sood, A. K., & Nagrath, D. (2016, Nov 8). Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth. Cell Metab, 24(5), 685-700. https://doi.org/10.1016/j.cmet.2016.10.011
Yang, X., & Qian, K. (2017, Jul). Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol, 18(7), 452-465. https://doi.org/10.1038/nrm.2017.22
Ye, H., Adane, B., Khan, N., Sullivan, T., Minhajuddin, M., Gasparetto, M., Stevens, B., Pei, S., Balys, M., Ashton, J. M., Klemm, D. J., Woolthuis, C. M., Stranahan, A. W., Park, C. Y., & Jordan, C. T. (2016, Jul 7). Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell, 19(1), 23-37. https://doi.org/10.1016/j.stem.2016.06.001
Yu, F., Li, T., Sui, Y., Chen, Q., Yang, S., Yang, J., Hong, R., Li, D., Yan, X., Zhao, W., Zhu, X., & Zhou, J. (2020, Nov). O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis. Protein Cell, 11(11), 852-857. https://doi.org/10.1007/s13238-020-00746-2
校內:2030-02-07公開