簡易檢索 / 詳目顯示

研究生: 劉英守
Liu, Ying-Shou
論文名稱: 應用資訊理論於監控伯努力過程之管制圖
An Information-theoretical Control Chart for Monitoring Bernoulli Processes
指導教授: 張裕清
Chang, Yu-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 52
中文關鍵詞: 修華特管制圖累積和管制圖指數加權移動平均管制圖伯努力過程一般化概似比管制圖資訊理論Kullback-Leibler distance、Bernoulli GLR
外文關鍵詞: Kullback-Leibler distance, CUSUM, EWMA, GLR control chart
相關次數: 點閱:227下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 統計製程管制圖是應用在品質管理活動中最常用的工具之一,用來偵測製程中重要的品質特性是否有變異發生。最常用的3種管制圖分別為:修華特管制圖、累積和管制圖(CUSUM)與指數加權移動平均管制圖(EWMA)。修華特管制圖廣泛地應用在即時監控製程平均數與變異數,其缺點在於品質特性的偏移量較小時無法快速地偵測出來。CUSUM與EWMA皆加入過去樣本資訊來改善偵測偏移量較小時的績效且在偵測特定位移時績效較佳,可透過設定最佳偏移量參數來偵測特定位移值。
    若想同時偵測多個不同位移有兩種方法,其中一個方法為結合多個管製圖,當每個管制圖皆要設定參數時會導致須設定多個參數,會讓使用管制圖變得更複雜。另一個則使用一般化概似比管制圖 (GLR管制圖),優點為不需設定欲偵測位移量參數且在整體而言監測能力都不錯。Kullback 和 Leibler 學者從資訊理論所延伸出來的Kullback-Leibler distance,為GLR管制圖的延伸,其概念為衡量兩個函數之間的距離,當距離大於管制界線則判定為製程落在管制界線外。
    本研究使用KL distance來建立管制圖基於伯努力過程下,在三個不合格率(0.1,0.01,0.001)案例下討論在不同情況下之績效,當不合格率0.1時偵測20%位移量以內績效會比Bernoulli GLR管制圖來的好。當不合格率0.01時偵測三倍位移量以內績效會比Bernoulli GLR管制圖來的好。當不合格率0.001時偵測十倍位移量以內績效會比Bernoulli GLR管制圖來的好。由此可知,隨著不合格率下降所能偵測較好績效的位移量比例也增加,因此本研究KL distance管制圖在小位移績效表現均會優於Bernoulli GLR管制圖。

    This study considers the problem of monitoring the proportion of nonconforming of a Bernoulli process based on the Kullback-Leibler distance of information theory. The traditional control chart for fraction nonconforming is p chart, but there are several disadvantages of it. Therefore, many other methods for monitoring the fraction have been proposed. In this research, we propose an Information-Theoretical Based Bernoulli Processes Control Chart (ITB control chart) for detecting the fraction nonconforming shift. We use a statistic which is a derivation of Kullback-Leibler distance to construct the control chart. The performance of control charts is measured by average number of observations to signal (ANOSS). We consider three different fraction nonconforming as 0.1, 0.01, and 0.001 when the process is in control. Using the control limits acquired above, we derive the out of control SSANOS for various shift sizes. Comparisons of the ITB to the Bernoulli cumulative sum (Bernoulli CUSUM) and Bernoulli generalized likelihood ratio (Bernoulli GLR) control chart show that the performance of the ITB is better than its competitors when the shift size is small. The ITB control chart is effective in detecting small shift sizes, but less effective in detecting larger shift sizes. It is shown that the shift of small size performance of ITB control chart is good. In addition, one advantage of ITB control chart is that it does not require users to specify control chart parameters while Bernoulli CUSUM and Bernoulli EWMA control chart have to in order to detecting a specific process shift faster.

    第一章緒論1 1.1研究背景1 1.2研究動機3 1.3研究目的4 1.4研究架構與流程 4 第二章文獻探討6 2.1 p 管制圖6 2.2 時間加權管制圖(Time-Weighted Control Chart)7 2.2.1 以不同分配為基礎之累積和管制圖(CUSUM)7 2.2.2 以不同分配為基礎之指數加權移動平均管制圖(EWMA)9 2.3 Change Point Model10 2.4伯努力一般化概似比率管制圖(Bernoulli GLR Chart),探討11 2.5管制圖績效衡量指標13 2.6Kullback-Leibler Distance15 2.7Information-Theoretical Based Process管制圖16 2.8 小結16 第三章研究方法與步驟18 3.1 研究假設與參數設定18 3.2 研究問題描述19 3.3 管制圖之建構20 3.3.1 的計算21 3.3.2 計算KL distance22 3.3.3 計算管制界線23 3.4 以KL distance角度看資料聚合24 3.5 小結 24 第四章結果分析25 4.1管制圖參數設定25 4.2管制圖比較與結果分析29 4.3案例討論39 第五章結論與未來研究方向42 5.1研究結論42 5.2未來研究方向43 參考文獻44 附錄I47 附錄II49

    李庭媁.(2014)。應用資訊理論於管制圖之建構。國立成功大學工業與資訊管理學系碩士論文,台南市。
    Alexander, C.,& Bo, B.(2006). An EWMA Solution to Detect Shifts in a Bernoulli Process in an Out‐of‐control Environment.Quality and Reliability Engineering International, 22(10), 419-428.
    Alwan, L. C., Ebrahimi, N., & Soofi, E. S. (1998). Information Theoretic Framework for Process Control. European Journal of Operational Research, 111(3), 526-542.
    Bourke, P. (1991). Detecting a shift in fraction nonconforming using run-length
    control charts with 100% inspection. Journal of Quality Technology, 23(3).
    Chang, T., & Gan, F. (2001). Cumulative sum charts for high yield processes. Statistica Sinica, 11(3), 791-806.
    Comon, P. (1994). Independent component analysis,a new concept? Signal Processing, 36(3), 287-314.
    Crowder, S. V. (1989). Design of exponentially weighted moving average schemes.Journal of Quality Technology, 21(3), 155-162.
    Gan, F. (1993). An optimal design of CUSUM control charts for binomial counts.Journal of Applied Statistics, 20(4), 445-460.
    Gokhale, D.V.,& Kullback, S., (1978). The Information in Contingency Tables. Marcel Dekker, New York.
    Hawkins, D. M. (1993). Cumulative sum control charting: an underutilized SPC tool.Quality Engineering, 5(3), 463-477.
    Hawkins, D. M., & Olwell, D. H. (1998). Cumulative sum charts and charting for quality improvement , Springer Verlag : New York.
    Hawkins, D. M., Peihua, Q., & Chang, W. K. (2003). The changepoint model for statistical process control. Journal of Quality Technology, 35(4), 355-366.
    Hawkins, D. M., & Zamba, K. (2005). Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics, 47(2).
    Huang, W., Wang, S., & Reynolds, M. R. (2012). A Binomial GLR Control Chart for Monitoring a Proportion.Journal of Quality Technology, 44(3),192-208.
    Huang, W., Wang, S., & Reynolds, M. R. (2013). A Generalized Likelihood Ratio Chart for Monitoring Bernoulli Processes. Quality and Reliability Engineering
    International, 29(5), 665-679.
    Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality Technology, 18(4), 203-210.
    Jones, M. C., & Sibson, R. (1987). What is projection pursuit?, Journal of the Royal
    Statistical Society. London, Ser. A, 150, 1-36.
    Kanagawa A., Arizono, I. & Ohta H. (1997). Design of the Control Chart Based on Kullback-Leibler Information. Frontiers in Statistical Quality Control, 5,183-192.
    Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86.
    Kullback, S. (1997). Information theory and statistics, Dover Publications:Los Angeles.
    Lucas, J. M., & Crosier, R. B. (1982). Fast initial response for CUSUM quality-control schemes: give your CUSUM a head start. Technometrics, 24(3), 199-205.
    Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: properties and enhancements. Technometrics, 32(1), 1-12.
    Montgomery, D. C. (2009). Statistical Quality Control: A Modern Introduction, ed, John Wiley & Sons : New York.
    Page, E. (1954). Continuous inspection schemes. Biometrika, 41(1),100-115.
    Reynolds Jr, M. R., & Stoumbos, Z. G. (1999). A CUSUM chart for monitoring a proportion when inspecting continuously. Journal of Quality Technology,31(1),87-108.
    Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages.Technometrics, 42(1), 97-102.
    Roberts, S. (1966). A comparison of some control chart procedures. Technometrics, 8(3), 411-430.
    Seyed, T. A. & Paravaneh, J. (2013). The economic design of multivariate binomial EWMA VSSI control charts. Journal of Applied Statistics,40(6),1301-1318.
    Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379–423 and 623–656.
    Stoumbos, Z. G., & Reynolds Jr, M. R. (2004). The robustness and performance of CUSUM control charts based on the double-exponential and normal distributions.Frontiers in Statistical Quality Control 7,79-100, Springer Verlag:New Jersey.
    Wu, Z., Liu, Y., He, Z., & Khoo, M. B. (2010). A cumulative sum scheme for monitoring frequency and size of an event. Quality and Reliability Engineering International, 26(6), 541-554.
    Zhao, Y., Tsung, F., & Wang, Z. (2005). Dual CUSUM control schemes for detecting a range of mean shifts. IIE Transactions, 37(11), 1047-1057.

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE