簡易檢索 / 詳目顯示

研究生: 黃郁勝
Huang, Yu-Sheng
論文名稱: 不同圓孔方向圓孔管在循環彎曲負載下平均曲率對響應與失效影響之實驗研究
Experimental Study of Mean Curvature Effect on the Response and Failure of Round-hole Tubes with Different Hole Directions under Cyclic Bending
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 55
中文關鍵詞: 6061-T6鋁合金圓孔管循環彎曲圓孔方向曲率比圓孔直徑曲率彎矩橢圓化循環至損壞圈數
外文關鍵詞: Round-Hole Tube, Cyclic Bending, Hole Direction, Curvature Ratio, Hole Diameter, Curvature, Moment, Ovalization, Number of Cycles to Failure
相關次數: 點閱:161下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是實驗研究不同圓孔方向與不同圓孔直徑的6061-T6鋁合金圓孔管在不同曲率比(最小曲率/最大曲率)循環彎曲負載下的力學行為和失效損壞,其中以彎矩-曲率和橢圓化-曲率的關係來呈現力學行為,以控制曲率範圍-循環至損壞圈數的關係來呈現失效損壞。本研究不同的圓孔方向有:0°、30°、60°與90°,不同的圓孔直徑有:2、4、6、8與10 mm,而不同的曲率比有:-1、-0.5、0與0.5。根據實驗結果顯示,不同圓孔方向或不同圓孔直徑對於彎曲-曲率的關係幾乎沒有影響,但對橢圓化-曲率的關係則有顯著的影響。當曲率比= -1時,彎曲-曲率的關係從第一個循環圈數開始便呈現為一個彈-塑性且穩定的迴圈,而橢圓化-曲率的關係則是呈現不對稱、增長、蝴蝶結狀的趨勢。當曲率比= -0.5、0與0.5時,因為曲率範圍變小的因素,導致彎矩對曲率的關係從第二個循環圈數起便呈現為一個線彈性的路徑,且隨著循環圈數的增加,路徑會有些許鬆弛但之後很快又會回到一個穩定的狀態。由於變形都是在彈性範圍內發生,使得橢圓化的增長呈現十分的緩慢。另外,當固定圓孔方向時,各個圓孔直徑的四種不同曲率比曲率範圍-循環至損壞圈數雙對數座標關係呈現出四條幾乎相互平行的直線。最後,本文使用Lee等人於2021年所提出理論來描述不同圓孔方向與不同圓孔直徑的6061-T6鋁合金圓孔管在不同曲率比循環彎曲負載下曲率範圍-循環至損壞圈數的關係,其中的材料參數將導入不同圓孔方向的變數,在與實驗結果進行比較後發現,理論可合理的描述實驗結果。

    This paper mainly studies the mechanical behavior and failure of 6061-T6 aluminum alloy round-hole tubes with different hole directions and different hole diameters under cyclic bending with different curvature ratios. The different hole directions in this study are: 0°, 30°, 60° and 90°, the different hole diameters are: 2, 4, 6, 8 and 10 mm, and the different curvature ratios are: -1, -0.5, 0 and 0.5. According to the experimental results, different hole directions or different hole diameters have little effect on the moment-curvature relationship but have a significant impact on the ovalization-curvature relationship. When the curvature ratio = -1, the moment-curvature relationship presents an elastic-plastic and stable loop from the first cycle, while the ovalization-curvature relationship is asymmetrical, growing, bow tie like trend. When the curvature ratio = -0.5, 0 and 0.5, due to the smaller curvature range, the relationship between the moment and the curvature presents a linear elastic path from the second cycle, and with the number of cycles increases, the path relaxes a little but quickly returns to a stable state. Since the deformation occurs in the elastic range, the growth of ovalization is very slow. In addition, when the direction of the circular hole is fixed, the relationship between the four different curvature ratios of the diameters of each diameter and the double logarithmic coordinate relationship between the range of curvature and the number of cycles to failure presents four almost parallel lines. Finally, the theory proposed by Lee et al. in 2021 is used to describe the relationship between the curvature range and the number of cycles to failure of 6061-T6 aluminum alloy round-hole tubes with different hole directions and different hole diameters under cyclic bending with different curvature ratios. Then the theoretical material parameters will be introduced into the variables of different hole directions. After comparing with the experimental results, it is found that the theory can reasonably describe the experimental results.

    摘要 i 英文延伸摘要 ii 誌謝 xxxv 目錄 xxxvi 圖目錄 xxxviii 表目錄 xli 符號說明 xlii 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 1 1-3 研究目的 4 第二章 實驗設備 5 2-1彎管實驗機 5 2-2油壓伺服控制系統 8 2-3監控系統 11 2-4檢測儀器 12 第三章 實驗原理與方法 15 3-1實驗材料與規格 15 3-2實驗原理 16 3-3實驗方法 17 3-4實驗步驟 17 3-5實驗數據計算與統整 18 第四章 實驗結果與理論分析 21 4-1實驗結果 21 4-1-1彎矩-曲率關係 21 4-1-2橢圓化-曲率關係 25 4-1-3曲率範圍-循環至損壞圈數關係 38 4-2理論分析 47 第五章 結論 53 參考文獻 54

    1. P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
    2. S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
    3. W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    4. W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
    5. W. F. Pan and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
    6. W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    7. K. H. Chang, C. M. Hsu, S. R. Sheu and W. F. Pan, “Viscoplastic response and collapse of 316L stainless steel under cyclic bending”, Steel and Composite Structures, Vol. 5, No. 5, pp. 359-374 (2005).
    8. 張高華、李國龍和潘文峰,”圓管承受循環彎曲負載截面變形量測器之設計”,技術學刊,第二十三卷,第一期,21-28頁(2008)。
    9. K. H. Chang, W. F. Pan and K. L. Lee, “Mean moment effect on circular thin-walled tubes under cyclic bending”, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
    10. K. L. Lee, C. Y. Hung, H. Y. Chang and W. F. Pan, “Buckling life estimation of circular tubes of different materials under cyclic bending”, Journal of Chinese Institute Engineers, Vol. 33, No. 2, pp. 177-189 (2010).
    11. K. L. Lee, C. Y. Hung and W. F. Pan, “CCD digital camera system for measuring curvature and ovalization of each cross-section of circular tube under cyclic bending”, Journal of Chinese Institute Engineers, Vol. 34, No. 1, pp. 75-86 (2011).
    12. K. L. Lee, C. M. Hsu and W. F. Pan, “The influence of mean curvatures on the collapse of sharp-notched circular tubes under cyclic bending”, Journal of Chinese Society of Mechanical Engineering, Vol. 34, No. 5, pp. 461-468 (2013).
    13. K. L. Lee, C. M. Hsu and W. F. Pan, “Viscoplastic collapse of sharp-notched circular tubes under cyclic bending”, Acta Mechanics Solida Sinica, Vol. 26, No. 6, pp. 629- 641 (2013).
    14. C. C. Chung, K. L. Lee and W. F. Pan, “Collapse of sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending”, International Journal of Structural Stability and Dynamics, Vol. 16, No. 7, 1550035 [24 pages] (2016).
    15. K. L. Lee, K. H. Chang and W. F. Pan, “Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending”, Structural Engineering & Mechanics, Vol. 60, No. 3, pp. 365-386 (2016).
    16. K. L. Lee, K. H. Chang and W. F. Pan, “Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending”, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
    17. K. L. Lee, M. L. Weng and W. F. Pan, “On the failure of round-hole tubes under cyclic bending”, Journal of Chinese Society of Mechanical Engineering, Vol. 40, No. 6, pp. 663-673 (2019).
    18. K. L. Lee, Y. S. Huang and W. F. Pan, “Influence of redundant hole on the degradation and failure of round-hole tubes under cyclic bending”, Journal of Chinese Institute of Engineers, Vol. 44, No. 5, pp. 478-490 (2019).
    19. K. L. Lee, Q. Y. Wen and W. F. Pan, “Response of round-hole tubes with different hole sizes and positions under pure bending relaxation”, Informatica Journal, Vol. 32, No. 8, pp. 48-65 (2021).
    20. K. L. Lee, Y. C. Tsai and W. F. Pan, “Mean curvature effect on the response and failure of round-hole tubes submitted to cyclic bending”, Advances in Mechanical Engineering, Vol. 13, No. 11, pp. 1-14 (2021).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE