簡易檢索 / 詳目顯示

研究生: 范駿威
Fan, Chun-wei
論文名稱: 以射頻濺鍍法沉積5B、6B族過渡金屬氮化物薄膜之表面自由能效應研究
Effects in surface free energy of sputter-deposited 5B、6B transitional metal nitride films
指導教授: 李世欽
Lee, Shih-chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 101
中文關鍵詞: 接觸角表面自由能過渡金屬氮化物IC封裝抗沾黏射頻濺鍍法
外文關鍵詞: Water contact angle, Surface free energy, IC packaging, Transitional metal nitride, Non-sticking, RF sputtering
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用射頻濺鍍法生長疏水性、抗沾黏、硬度高、熱穩定度高和防腐蝕的VNx、NbNx、TaNx、MoNx、WNx功能性薄膜,探討其薄膜組成、溫度(20-170 ℃)和表面粗糙度對表面自由能之影響,作為電子封裝模具表面被覆層之應用參考。實驗的結果顯現,隨著氮含量的增加,在20 ℃時的接觸角也跟著增加,表面自由能則下降,在VN1.73、NbN1.71、TaN1.58、MoN2.07、WN1.91時有一接觸角最大值101.4o~119.2o,和表面自由能最小值29.8~39.6 mN/m,之後接觸角就呈下降趨勢,表面能則呈上升趨勢。這可能是因為這五種成分比值接近最穩定的化合成分,造成水滴最不易與其形成氫橋,接觸角最大,表面的能量也最低。而氫橋會影響薄膜表面能,大接觸角代表弱的氫橋,表面自由能自然較低。而總自由能和極性自由能有相同的趨勢。五種薄膜皆有好的抗沾黏能力(接觸角>100o,表面自由能<40 mN/m)。高溫也有助於接觸角及表面能的降低,因為溫度的增高,氫橋開始斷裂,水開始蒸發,也可由Gibbs 熱力學關係式來說明,但它也增加了成本。表面自由能也和薄膜表面粗糙度有正比關係,因為表面越粗糙時,薄膜表面積較大,形成氫橋的可能性增加,因此增加了表面能,這也符合了原理的推導結果。

    This study describes depositing VNx, NbNx, TaNx, MoNx and WNx coatings using RF sputtering to develop wear resistant, non-sticking, high hardness, thermal stable and corrosion resistant coatings for IC molding tools. It is focused on the influence to the surface free energy (SFE) by film composition, surface temperature and surface roughness.
    The experimental results show that with increasing N content in the deposited films, the water contact angle ultimately increase to 101.4o~119.2o, and SFE decrease to 29.8~39.6 mN/m. This corresponds to the film composition VN1.73, NbN1.71, TaN1.58, MoN2.07, WN1.91. Because these five compositions are close the most stoichiometric compositions. It is therefore elucidated that the hydrogen bridge between water and the coating surface is difficult to formed. The SFE of the five coatings present the same trend to polar component of SFE, which seems the reason for these five coating materials presenting non-sticking characteristic (contact angle>100o, SFE<40 mN/m).
    Contact angle and SFE are also found to decrease when surface temperature is increased. This is due to water desorption of the surface that break hydrogen bridges and fit Gibbs equation. SFE also has a direct influence by the surface roughness of these coatings. A rougher surface increases surface area and likely to ease hydrogen bridge formation, and thereby increases SFE.

    目錄 封面.....................................................1 授權書...................................................2 中文合格證明.............................................3 英文合格證明.............................................4 中文摘要.................................................5 英文摘要.................................................6 誌謝.....................................................8 目錄.....................................................9 圖目錄..................................................11 表目錄..................................................15 第一章 序論.............................................16 1-1 前言................................................16 1-2 動機與目的..........................................17 第二章 原理.............................................18 2-1 表面自由能應用之領域................................18 2-2 鍍膜................................................22 2-2-1 電漿..............................................22 2-2-2 濺鍍..............................................24 2-2-3 二極濺鍍..........................................27 2-2-4 射頻濺鍍..........................................27 2-3 接觸角與表面自由能之關聯性..........................30 2-4 溫度與表面自由能之關聯性............................36 2-5 薄膜粗糙度與表面自由能之關聯性......................37 第三章 實驗.............................................39 3-1 薄膜成長............................................39 3-2 試片製備............................................43 3-3 成分分析............................................44 3-4 接觸角與表面自由能之關聯性..........................45 3-5 溫度與表面自由能之關聯性............................49 3-6 薄膜粗糙度與表面自由能之關聯性......................52 第四章 結果與討論.......................................55 4-1 接觸角與表面自由能之關聯性..........................55 4-2 溫度與表面自由能之關聯性............................64 4-3 薄膜粗糙度與表面自由能之關聯性......................86 第五章 結論.............................................93 參考文獻................................................95 自述...................................................101 圖目錄 Fig. 2-1 Applications in surface free energy............20 Fig. 2-2 Cavity bar for IC packing......................21 Fig. 2-3 The interaction between Ar ion gas and the target surface.................................................26 Fig. 2-4 RF-sputter deposition system used in this study...................................................29 Fig. 2-5 Galileo’s explanation for the floating of thin sheets gold on water....................................31 Fig. 2-6 Geometric parameters for determining interfacial energy..................................................32 Fig. 3-1 The growth mechanism of the coating............40 Fig. 3-2 The Thornton Structure-Zone model of sputter deposited layers........................................42 Fig. 3-3 Schematic representation of step sequence for coating deposition......................................43 Fig. 3-4 The process of the contact angle measurement...46 Fig. 3-5 Dataphysics OCA-20 contact angle analyzer......47 Fig. 3-6 The apparatus of atomic force microscopy (AFM)...................................................53 Fig. 3-7 Schematic representation of AFM operation......53 Fig. 3-8 The AFM topographies of various RMS coatings...54 Fig. 4-1 Contact angle images of test liquids on the TaNx films at 20℃...........................................56 Fig. 4-2 Effect of film composition on surface free energy (SFE) components of VNx thin films at 20℃..............58 Fig. 4-3 Effect of film composition on surface free energy (SFE) components of NbNx thin films at 20℃.............59 Fig. 4-4 Effect of film composition on surface free energy (SFE) components of TaNx thin films at 20℃.............60 Fig. 4-5 Effect of film composition on surface free energy (SFE) components of MoNx thin films at 20℃.............61 Fig. 4-6 Effect of film composition on surface free energy (SFE) components of WNx thin films at 20℃..............62 Fig. 4-7 Contact angle images of test liquids on the TaN1.58 film at 20-95 ℃................................65 Fig. 4-8(a) Effect of film surface temperature on the Total SFE of VNx thin films prepared at different composition.............................................71 Fig. 4-8(b) Effect of film surface temperature on the Dispersive SFE of VNx thin films prepared at different composition.............................................72 Fig. 4-8(c) Effect of film surface temperature on the Polar SFE of VNx thin films prepared at different composition.............................................73 Fig. 4-9(a) Effect of film surface temperature on the Total SFE of NbNx thin films prepared at different composition.............................................74 Fig. 4-9(b) Effect of film surface temperature on the Dispersive SFE of NbNx thin films prepared at different composition.............................................75 Fig. 4-9(c) Effect of film surface temperature on the Polar SFE of NbNx thin films prepared at different composition.............................................76 Fig. 4-10(a) Effect of film surface temperature on the Total SFE of TaNx thin films prepared at different composition.............................................77 Fig. 4-10(b) Effect of film surface temperature on the Dispersive SFE of TaNx thin films prepared at different composition.............................................78 Fig. 4-10(c) Effect of film surface temperature on the Polar SFE of TaNx thin films prepared at different composition.............................................79 Fig. 4-11(a) Effect of film surface temperature on the Total SFE of MoNx thin films prepared at different composition.............................................80 Fig. 4-11(b) Effect of film surface temperature on the Dispersive SFE of MoNx thin films prepared at different composition.............................................81 Fig. 4-11(c) Effect of film surface temperature on the Polar SFE of MoNx thin films prepared at different composition.............................................82 Fig. 4-12(a) Effect of film surface temperature on the Total SFE of WNx thin films prepared at different composition.............................................83 Fig. 4-12(b) Effect of film surface temperature on the Dispersive SFE of WNx thin films prepared at different composition.............................................84 Fig. 4-12(c) Effect of film surface temperature on the Polar SFE of WNx thin films prepared at different composition.............................................85 Fig. 4-13 Relationship between surface free energy and surface roughness of TaNx films at 20 ℃ by SEM.........87 Fig. 4-14 Relationship between surface free energy and surface roughness of VNx films at 20 ℃.................88 Fig. 4-15 Relationship between surface free energy and surface roughness of NbNx films at 20 ℃................89 Fig. 4-16 Relationship between surface free energy and surface roughness of TaNx films at 20 ℃................90 Fig. 4-17 Relationship between surface free energy and surface roughness of MoNx films at 20 ℃................91 Fig. 4-18 Relationship between surface free energy and surface roughness of WNx films at 20 ℃.................92 表目錄 Table 3-1 The composition of VNx、NbNx、TaNx、MoNx、WNx films...................................................44 Table 3-2 Test liquids and their surface tension components at 20℃.................................................46 Table 3-3 Test liquids and their surface tension components..............................................50 Table 4-1 Contact angles of test liquids on the films at 20℃....................................................57 Table 4-2 Contact angles of test liquids on the VNx films...................................................66 Table 4-3 Contact angles of test liquids on the NbNx films...................................................67 Table 4-4 Contact angles of test liquids on the TaNx films...................................................68 Table 4-5 Contact angles of test liquids on the MoNx films...................................................69 Table 4-6 Contact angles of test liquids on the WNx films...................................................70

    [1] C. C. Sun, S. C. Lee, S. B. Dai, Y. S. Fu , Y. C. Wang , Y. H. Lee, “Surface free energy of CrNx films deposited using closed field unbalanced magnetron sputtering”, Applied Surface Science 252 (2006) 8295
    [2] C. C. Sun, S. C. Lee, W. C. Hwang, J. S. Hwang, I. T. Tang, Y. S. Fu, “Surface Free Energy of Alloy Nitride Coatings Deposited Using Closed Field Unbalanced Magnetron Sputter Ion Plating”, Materials Transactions, 47 (2006) 2533
    [3] C. C. Sun, S. C. Lee, S. B. Dai, S. L. Tien, C. C. Chang, Y. S. Fu, “Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating”, Applied Surface Science 253 (2007) 4094
    [4] D. Zhong, E. Mateeva, I. Dahan, J. J. Moore, G. G. W. Mustoe, T. Ohno, J. Disam, S. Thiel, “Wettability of NiAl, NiAlN, TiBC, and TiBCN films by glass at high temperatures”, Surface and Coatings Technology 133-134 (2000) 8
    [5] E. Lugscheider, K. Bobzin, St. Barwulf, T. HornigU, “Oxidation characteristics and surface energy of chromium-based hardcoatings for use in semisolid forming tools”, Surface and Coatings Technology 133-134 (2000) 540
    [6] D. Y. Wang, M. C. Chiu, “Characterization of Cr2O3/CrN duplex coatings for injection molding applications”, Surface and Coatings Technology 137 (2001) 164
    [7] Q. Luo, P. E. Hovsepian, “Transmission electron microscopy and energy dispersive X-ray spectroscopy on the worn surface of nano-structured TiAlN/VN multilayer coating”, Thin Solid Films 497 (2006) 203.
    [8] M. Fenker, M. Balzer, R.V. Buchi, H.A. Jehn, H. Kappl, J.J Lee,“Deposition of NbN thin films onto high-speed steel using reactive magnetron sputtering for corrosion protective applications”, Surface and Coatings Technology 163 (2003) 169.
    [9] L. Gladczuk, A. Patel, J.D. Demaree, M. Sosnowski, “Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel”, Thin Solid Films 476 (2005) 295.
    [10] C. Sarioglu, U. Demirler, M. K. Kazmanli, M. Urgen, “Measurement of residual stresses by X-ray diffraction techniques in MoN and Mo2N coatings deposited by arc PVD on high-speed steel substrate”, Surface and Coatings Technology 190 (2005) 238.
    [11] L. R. Shaginyan, A. V. Kurdyumov, “Mechanisms for hardening film materials: W-Ti-N and TiN-Cu Systems as Examples”, Powder Metallurgy and Metal Ceramics 44 (2005) 161.
    [12] C. Neinhuis, W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces”, Annals of Botany 79 (1997) 667.
    [13] S.H. Doerr, R.A. Shakesby, R.P.D. Walsh, “Soil water repellency: its causes, characteristics and hydro-geomorphological significance”, Earth-Science Reviews 51 (2000) 33.
    [14] B.S. Hong, J.H. Han, S.T. Kim, Y.J. Cho, M.S. Park, T. Dolukhanyan, C. Sung, “Endurable water-repellent glass for automobiles”, Thin Solid Films 351 (1999) 274.
    [15] T. Yoneda, T. Morimoto, “Mechanical durability of water repellent glass”, Thin Solid Films 351 (1999) 279.
    [16] A. Mavon, D. Redoules, P. Humbert, P. Agache, Y. Gall, “Changes in sebum levels and skin surface free energy components following skin surface washing” Colloids and Surface B: Biointerfaces 10 (1998) 243.
    [17] A. Mavon, H. Zahouani, D. Redoules, P. Agache, Y. Gall, P. Humbert,“Sebum and stratum corneum lipids increase human skin surface free energy as determined from contact angle measurements: A study on two anatomical sites”, Colloids and Surface B: Biointerfaces 8 (1997) 147.
    [18] M. Espinosa-Jimenez, E. Gimenez-Martin, A. Ontiveros-Ortega, “Effect of a cationic dyeon the surface free energy of leacril fabric”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 136 (1998) 159.
    [19] S.D. Knorr, E.C. Combe, L.F. Wolff, J.S. Hodges, “The surface free energy of dental gold-based materials”, Dental Materials 21 (2005) 272.
    [20] F. Mabboux, L. Ponsonnet, J.J. Morrier, N. Jaffrezic, O. Barsotti,“Surface free energy and bacterial retention to saliva-coated dental implant materials-an in vitro study”, Colloids and Surface B: Biointerfaces 39 (2004) 199.
    [21] A. Said, A. Mavon, S. Makki, P. Humbert, J. Millet, “Wettability of psoralen powders: influence of bile salts on their contact angles and surface free energy components”, Colloids and Surface B: Biointerfaces 8 (1997) 227.
    [22] K.L. Mittal (Ed.), “The wettability of coal and its relevance to the control of dust during coal mining”, Contact Angle, Wettability and Adhesion, (1993) 953.
    [23] S.G. Harris, E.D. Doyle, A.C. Vlaveld, J. Audy, D. Quick, “A study of the wear mechanisms of TiAlN and TiAlCrN coated high-speed steel twist drills under dry machining conditions”, Wear 254 (2003) 723.
    [24] S.G. Harris, E.D. Doyle, A.C. Vlaveld, J. Audy, J.M. Long, D. Quick,“Influence of chromium content on the dry machining performance of cathodic arc evaporated TiAlN coatings”, Wear 254 (2003) 185.
    [25] K.L. Mittal (Ed.), “Fracture mechanics test for measuring the adhesion of magnetron-sputtered TiN coatings”, Adhesion Measurement of Films and Coatings”, (1995) 87.
    [26] M. Forster, M. Bohnet, “Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling”, International Journal of Thermal Sciences 38 (1999) 944.
    [27] Brain Campman, “Plasma”, Glow Discharge Process, John Wiley & Sons, NewYork, U. S. A (1980) Chap. 3.
    [28] S.M. Rossnagel, “Handbook of plasma processing technology”, Noyes Publications Park Ridge, New Jersey, U.S.A. (1982).
    [29] R.A. Scholl, “Asymmetric bipolar pulsed power: a new power technology”, Surface and Coatings Technology 98 (1998) 823.
    [30] J. Musil, “Recent advances in magnetron sputtering technology”, Surface and Coatings Technology 100-101 (1998) 280.
    [31] K. L. Mittal (Ed.) “Contact angle,wetting, and adhesion: a critical review”, Contact Angle, Wettability and Adhesion, The Netherlands, (1993) 3.
    [32] H.L. Sulman, Transactions of the Institution of Mining and Metallurgy 44-204 (1920) 128.
    [33] T. Young, “An Essay on the Cohesion of Fluids”, Philosophical Transactions of the Royal Society of London 95 (1805) 65.
    [34] A. Dupre, Theorie Mechanique de la Chaleur, Gauthier-Villars, Paris (1869) 369.
    [35] D.H. Bangham, R.I. Razouk, “Adsorption and the wettability of solid surfaces”, Transactions of the Faraday Society 33 (1937) 1459.
    [36] N.K. Adam, “Physics and Chemistry of Surfaces”, Oxford University Press, London (1941).
    [37] A.W. Adamson, “Physical Chemistry of Surface”, Wiley Interscience, New York (1990).
    [38] J.J. Bikerman, “Surface Chemistry”, Academic Press, New York (1958).
    [39] F.M. Fowkes, “Role of acid-base interfacial bonding in adhesion”, Journal of Adhesion Science and Technology, 1 (1987) 7.
    [40] F.M. Fowkes, “Donor-Acceptor Interactions at Interfaces”, The Journal of Adhesion 4 (1972) 155.
    [41] F.M. Fowkes, “Attractive forces at interfaces”, Industrial and Engineering Chemistry 56 (1964) 40.
    [42] B. Janczuk, T. Bialopiotrowicz, A. Zdziennicka, “Some remarks on the components of the liquid surface free energy”, Journal of Colloid and Interface Science 211 (1999) 96.
    [43] D.K. Owens, R.C. Wendt, “Estimation of the surface free energy of polymers”, Journal of Applied Polymer Science 13 (1969) 1741.
    [44] J.N. Israelachvili, “Intermolecular and surface forces”, Academic Press
    Limited, (1991) 176.
    [45] Q. Zhao, Y. Liu, E.W. Abel, “Surface free energy of electroless Ni-P based composite coatings”, Applied Surface Science 240 (2005) 441.
    [46] M.D. Podesta, “Understanding the properties of matter”, Birkbeck College, University of London, (1996) 301.
    [47] L.H. Lee (Ed.), “Fundamentals of adhesion”, Plenum Press, New York,(1991) 8.
    [48] Y. Kaibara, K. Sugata, M. Tachiki, H. Umezawa, H. Kawarada, “Control wettability of the hydrogen-terminated diamond surface and the oxidized diamond surface using an atomic force microscope”, Diamond Related Materials 12 (2003) 560.
    [49] A. Kawai, H. Nagata, M. Takata, “Dependency of adhesion behavior on thermal stress distribution in photoresist micropatterns”, Japanese Journal of Applied Physics 32 (1993) 1020
    [50] R. F. Bunshah, “Deposition technologies for films and coatings”, Noyes Publications, Park Ridge, New Jersey, U. S. A. (1982)
    [51] J. Venables, “Nucleation and growth of thin films”, Reports on Progress in Physics 47 (1984) 399.
    [52] J.A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science and Technology 11 (1974) 666.
    [53] B. Janczuk, W. Wojcik, A. Zdziennicka, “Determination of components of the surface tension of some liquids from interfacial liquid-liquid tension measurements”, Journal of Colloid and Interface Science 157 (1993) 384.
    [54] Q. Zhao, Y. Liu, E.W. Abel, “Effect of temperature on the surface free energy of amorphous carbon films”, Journal of Colloid and Interface Science 280 (2004) 174.
    [55] C. Jho, M. Carreras, “The effect of viscosity on the drop weight technique for the measurement of dynamic surface tension”, Journal of Colloid and Interface Science 99 (1984) 543.

    無法下載圖示 校內:2107-04-22公開
    校外:2107-04-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE