研究生: |
林揚盛 Lin, Yang-Sheng |
---|---|
論文名稱: |
適用於正常睡眠者與失眠者之法則式睡眠自動判讀系統 A Rule-based Automatic Sleep Scoring System for the Healthy Individuals and Insomnia Subjects |
指導教授: |
梁勝富
Liang, Sheng-Fu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 睡眠判讀 、自動睡眠判讀 、法則式 、決策樹 、失眠 |
外文關鍵詞: | sleep staging, automatic sleep staging, rule-based, decision tree, insomnia |
相關次數: | 點閱:115 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
睡眠是影響生活品質不可或缺的一環,人類一天會花上三分之一的時間在睡眠上,而現今多數研究更認為睡眠更是在能量的儲存以及學習記憶中扮演了極為重要的角色,但並不是所有人都能擁有良好的睡眠品質。因此在臨床上會使用多通道睡眠生理紀錄儀 (Polysomnography, PSG) 進行檢查,由專家對於收錄的生理訊號進行人工判讀並由專家或醫生進行診斷。由於人工判讀是一件十分主觀且耗時的工作,故有許多睡眠自動判讀演算法被提出。雖然這些演算法在準確率上皆有不錯的表現,但卻都僅在單一族群上。而真正需要被診斷的是有睡眠疾病的而非正常人。
本研究提出一套基於睡眠生理訊號的特徵分析。一般作自動睡眠判讀的方法只用到最具代表性的特徵作判斷且只考慮到一種情況,例如:判斷睡眠中的清醒期的時候只有用到阿法波,而且,當阿法波出現超過一定比例後就判定為清醒期。在這篇論文中,除了最具代表性的特徵外,還會參照AASM規則,使用其他有被提到的輔助性的特徵,藉由加入這些考量後,可以使判讀的準確率得到明顯的提升,並且包含正常人與失眠患者倆的族群,且經由對訊號和頻譜的分析,提出了一個高準確率(85.5%, 84.8%)且可靠的自動睡眠判讀方法。 並且提出一個能夠針對不同的群體來自動選擇適合的自動睡眠判讀決策樹且選擇適合的結果。系統與專家整體的準確率可達85.2%,在分類的結果也可達到高準確率的正確分類。將來,可以將此方法運用在有睡眠障礙的病人的診斷和治療上,例如:失眠病人的診斷和治療。也可以運用在記憶學習等學術研究上。
Sleep is very important for human beings. People spend one third of time on sleep one day. Many studies today indicate that sleep play a significance role on energy storage and learning. However, there’s not everyone who can acquire good sleep quality. Therefore, the clinical use Polysomnography (PSG) to recording sleep physiological signals. The collection of physiological signals will be manual scoring by expert for diagnosis. Since manual scoring is a very subjective and time-consuming work, so there are many sleep automatic scoring methods have been proposed. Although the agreement of these methods on a good performance, the method usually applied on the single group, the subject that really need to be diagnosed is who has the sleep disorder, not the normal.
. In this study, we propose a sleep scoring system which based on the analysis of the signal and the spectrum. Generally, the methods of automatic sleep staging only use the most typical feature for staging and only consider one case. For example, the decision whether the sleep is staged as wake or not is only by using the alpha wave. And when the alpha wave appears lasting for more than a proportion, the sleep is classified as the wake stage. In this paper, besides the most typical feature, we use other additional features referencing the rules by AASM. By adding the more consideration, the agreement of the staging is improved apparently. We propose a high accuracy (85.5%, 84.8%) and reliable automatic sleep staging method. And we propose the automatic selecting method that could choose the proper decision tree to the different group to do the sleep scoring and choose the proper result. The agreement between the expert and the system is 85.2%, and also we could classify the subjects correctly. In the future, the method can be used in the diagnosis and cure of the patients with sleep obsession, ex. the diagnosis and cure of the patients with sleep insomnia. This method can be used in the memory learning or other academic researches.
Agarwal, R., & Gotman, J. (2001). Computer-assisted sleep staging. IEEE Transactions on Biomedical Engineering, 48(12), 1412-1423.
Anderer, P., Gruber, G., Parapatics, S., Woertz, M., Miazhynskaia, T., Klösch, G., . . . Danker-Hopfe, H. (2005). An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24× 7 utilizing the Siesta database. Neuropsychobiology, 51(3), 115-133.
Berthomier, C., Drouot, X., Herman-Stoïca, M., Berthomier, P., Prado, J., Bokar-Thire, D., . . . d Ortho, M. (2007). Automatic analysis of single-channel sleep EEG: validation in healthy individuals. SLEEP-NEW YORK THEN WESTCHESTER-, 30(11), 1587.
Danker‐hopfe, H., Anderer, P., Zeitlhofer, J., Boeck, M., Dorn, H., Gruber, G., . . . Parapatics, S. (2009). Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. Journal of sleep research, 18(1), 74-84.
Danker‐Hopfe, H., Kunz, D., Gruber, G., Klösch, G., Lorenzo, J. L., Himanen, S.-L., . . . Dorn, H. (2004). Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders. Journal of sleep research, 13(1), 63-69.
Duman, F., Erdamar, A., Erogul, O., Telatar, Z., & Yetkin, S. (2009). Efficient sleep spindle detection algorithm with decision tree. Expert Systems with Applications, 36(6), 9980-9985.
Iber, C. (2007). The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications: American Academy of Sleep Medicine.
Jansen, B. H., & Dawant, B. M. (1989). Knowledge-based approach to sleep EEG analysis-a feasibility study. IEEE Transactions on Biomedical Engineering, 36(5), 510-518.
Krystal, A. D., Edinger, J. D., Wohlgemuth, W. K., & Marsh, G. R. (2002). NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep, 25(6), 630-640.
Liang, S.-F., Kuo, C.-E., Hu, Y.-H., & Cheng, Y.-S. (2012). A rule-based automatic sleep staging method. Journal of neuroscience methods, 205(1), 169-176.
Liang, S.-F., Kuo, C.-E., Hu, Y.-H., Pan, Y.-H., & Wang, Y.-H. (2012). Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement, 61(6), 1649-1657.
Mahowald, M. W., & Schenck, C. H. (2005). Insights from studying human sleep disorders. Nature, 437(7063), 1279-1285.
Mignot, E. (2008). Why we sleep: the temporal organization of recovery. PLoS Biol, 6(4), e106.
Ohayon, M. M. (2002). Epidemiology of insomnia: what we know and what we still need to learn. Sleep medicine reviews, 6(2), 97-111.
Park, H., Park, K., & Jeong, D.-U. (2000). Hybrid neural-network and rule-based expert system for automatic sleep stage scoring. Paper presented at the Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE.
Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects.
Rosenberg, R. S., & Van Hout, S. (2013). The American Academy of Sleep Medicine inter-scorer reliability program: sleep stage scoring. J Clin Sleep Med, 9(1), 81-87.
Schaltenbrand, N., Lengelle, R., Toussaint, M., Luthringer, R., Carelli, G., Jacqmin, A., . . . Macher, J.-P. (1996). Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep, 19(1), 26-35.
Smith, J. R., Negin, M., & Nevis, A. H. (1969). Automatic analysis of sleep electroencephalograms by hybrid computation. IEEE transactions on systems science and cybernetics, 5(4), 278-284.
Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 101(2), 243-276.
Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. SCIENCE-NEW YORK THEN WASHINGTON-, 262, 679-679.
Tian, J., & Liu, J. (2006). Automated sleep staging by a hybrid system comprising neural network and fuzzy rule-based reasoning. Paper presented at the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.
Virkkala, J., Hasan, J., Värri, A., Himanen, S.-L., & Müller, K. (2007). Automatic sleep stage classification using two-channel electro-oculography. Journal of neuroscience methods, 166(1), 109-115.