| 研究生: |
黃文祥 Hwang, Wen-Hsiang |
|---|---|
| 論文名稱: |
長脈衝雷射引發金屬薄板應力現象之研究 The phenomena of the laser induced stress on the thin metallic plate with a long pulse |
| 指導教授: |
林震銘
Ling, Jehn-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 應力 、長脈衝 、水膜 |
| 外文關鍵詞: | stress, long pulse, water film |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討長脈衝雷射於金屬薄板引發應力與變形現象,分析水膜覆蓋層及不同雷射加工參數所引發應力之影響,分別以實驗及數值模擬進行探討。實驗中使用Nd-YAG脈衝雷射(波長1064 nm)分別加熱具水膜覆蓋的銅片與不鏽鋼片,並使用陶瓷壓電感測器與白光干涉儀量測脈衝雷射作用產生之應力與板件變形,且分別針對不同水膜厚度、試件厚度以及不同雷射加工條件進行討論。在數值分析部分,考慮材料之彈塑性行為,採用單純力學模式以有限元素軟體計算雷射引發應力造成板件變形與殘留應力,並與實驗結果比較。
結果顯示當雷射能量不足使試件表面產生熔融或汽化反應時,雷射引發之應力主要為雷射作用過程中所產生之熱應力與輻射壓力效應;當試件表面產生熔融或汽化,在水膜覆蓋下,剝蝕效應與電漿產生之回彈壓力將使應力顯著增加,且應力與變形會隨著雷射功率、脈衝作用時間、水膜厚度的增加而增加,但隨板件厚度增加而減少。
The aim of this study is to analyze the phenomena of the laser induced stress and deformation on the metallic plate with a long pulse laser, and investigate the effects of the water film on the substrate experimentally and numerically. In the experiment, an Nd-YAG laser was used as a pulse energy source to heat the copper and 304 stainless steel plates respectively. The stress and plate deformation have been measured with ceramic piezoelectric transducers and white light interferometer respectively. With various thicknesses of the water film and substrate, the effects of the process parameters were investigated in the experiment. Furthermore a finite element software was adopted to calculate plate deformation, residual stress and strain in the numerical analysis.
It was shown that the main sources of the stress terms at low intensity radiations are the thermal stress and radiation pressure produced directly by the laser interaction. However, at the focus of the laser beam, a strong stress response due to the recoil pressure produced by the ablation and plasma mechanisms on the stainless steel substrate might occur. The stress could be enlarged by covering the water film on the substrate. It can be found that the stress and deformation increases with the laser power, pulse duration time, and thickness of water film in the present study.
[1]Steen W. M., “Laser material processing”, 2nd ed., Springer Verlag, 1998.
[2]Ding K., Ye, L., “Laser shock peening performance and process simulation”, Woodhead, 2006.
[3]Wu M. C., Jain A., Tsai J. C., “Recovery of Stiction-Failed MEMS Structures Using Laser-Induced Stress Waves”, Journal of Microelectromechanical Systems, v13, n4, 2004.
[4]Germain C., Charron L., Lilge L., Tsui Y. Y., “Electrodes for microfluidic devices produced by laser induced forward transfer”, Applied surface science, v253, n19, p8328-8333, 2007.
[5]Scruby C. B., Drain L. E., “Laser ultrasonics techniques and applications”, Adam Hilger ,New York,1990.
[6]Hoffman C. G., “Laser-target interactions”, Journal of Applied Physics, v45, n5, 1974.
[7]Fairand B. P., Clauer A. H., “Laser generation of high-amplitude stress waves in materials”, Journal of Applied Physics, v50, n3, p 1497-1502, 1979.
[8]O’Keefe J. D., Skeen C. H., “Laser-induced stress-wave and impulse augmentation”, Applied Physics Letters, v21, n10, 1972.
[9]Fox J. A., “Effect of water and paint coatings on laser-irradiated targets”, Applied Physics Letters, v24, n10, p461-464, 1974.
[10]Yang L. C., “Stress waves generated in thin metallic films by a Q-switched ruby laser”, Journal of Applied Physics, v45, n6, p2601-2608, 1974.
[11]Cottet F., Romain J. P., “Formation and decay of laser-generated shock waves”, Physical Review A, v25, n1, 1982.
[12]Fabbro R., Fournier J., Ballard P., “Physical study of laser-produced plasma in confined geometry” , Journal of Applied Physics, v68, n2, p775-784, 1990.
[13]Peyre P., Fabbro R., “Laser shock processing: a review of the physics and applications”, Optical and Quantum Electronics, v27, p1213-1229, 1995.
[14]Masse J. E., Barreau G., “Laser generation of stress waves in metal”, Surface and Coatings Technology, v70, n2-3, p231-234, 1995.
[15]Couturier S., De Resseguier T., Romain J. P., “Shock profile induced by short laser pulses”, Journal of Applied Physics, v79, n12, p9338, 1996.
[16]Sano Y., Mukai N., Okazaki K., “Residual stress improvement in metal surface by underwater laser irradiation”, Nuclear Instruments and Method in Physics B, v121, n1-4, p432-436, 1997.
[17]Hong X., Wang S., Guo D., “Confining Medium and Absorptive Overlay: Their Effects on a Laser- induced Shock Wave”, Optics and Lasers in Engineering, v29, n6, p447-455, 1998.
[18]Braisted W., Brockman R., “Finite element simulation of laser shock peening” v21, n7, p719-724, 1999.
[19]Kannatey-Asibu E., Elijah Kannatey-Asibu Jr., “Principles of Laser Materials Processing”, 1st, Wiley, 2009.
[20]Namba Y., “Laser Forming of Metal and Alloys”, Proceedings of LAMP, Osaka, p601-606, 1987.
[21]Geiger M., Vollertsen F., Deinzer G., “Flexible straightening of car body shells by laser forming” , Sheet Metal and Stamping Symping Symposium SAE Special Publication, n944, SAE, p37-44, 1993.
[22]Geiger M., Arnet H., Vollertsen F., “Laser Forming”, Manufacturing Systems, n24, v1, p43-47, 1995.
[23]Yau C. L., Chan K. C., Lee W. B., “Laser Bending of Leadframe Materials”, Journal of Materials Processing Technology, v82, p117-121, 1998.
[24]Ocana J. L., Morales M., Molpeceres C., “Short pulse laser microforming of thin metal sheets for MEMS manufacturing”, Applied Surface Science, v254, n4, p997-1001, 2007.
[25]張永康, 高立, “激光衝擊TA2板料變形的理論分析與實驗研究”, 中國激光, v33, n9, p1282-1287, 2006.
[26]Planck M., “The theory of heat radiation”, Dover, 1991.
[27]Takaya Y., “The Optical Radiation Pressure Microprobe Unit and Nikon”, 2008. http://www.nikon.com/about/technology/field/2008/micro.htm
[28]Berthe L., Fabbro R., Peyre P., “Shock waves from a water-confined laser-generated plasma”, Journal of Applied Physics, v82, n6, p2826, 1997.
[29]Chen W. F., Han D. J., “Plasticity for Structural Engineers”, Springer-Verlag, 1988.
[30]Getting Started with ABAQUS/Standard, H.K.S. Inc., Pawtuckett, RI, 1998.
[31]Doebelin E. O., “Measurement systems application and design”, 4th ed., McGraw-Hill, 1990.
[32]Timoshenko S., Woinowsky-krieger S., “Theory of plates and shells”, 2nd ed., McGraw-Hill, 1959.
[33]愛發股份有限公司編著, “ABAQUS實務入門引導”, 全華科技圖書股份有限公司印行, 2005.
[34]American Society for metals, “Metals Handbook”, The Society, 1994.
[35]Kalpakjian S., Schmid S. R., “Manufacturing processes for engineering materials”, 4th ed., Prentice Hall, 2002.
[36]Meguid S. A., Shagal G., Stranart J. C., “Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses”, Finite elements in analysis and design, v31, n3, p179-191, 1999.