簡易檢索 / 詳目顯示

研究生: 黃文祥
Hwang, Wen-Hsiang
論文名稱: 長脈衝雷射引發金屬薄板應力現象之研究
The phenomena of the laser induced stress on the thin metallic plate with a long pulse
指導教授: 林震銘
Ling, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 126
中文關鍵詞: 應力長脈衝水膜
外文關鍵詞: stress, long pulse, water film
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討長脈衝雷射於金屬薄板引發應力與變形現象,分析水膜覆蓋層及不同雷射加工參數所引發應力之影響,分別以實驗及數值模擬進行探討。實驗中使用Nd-YAG脈衝雷射(波長1064 nm)分別加熱具水膜覆蓋的銅片與不鏽鋼片,並使用陶瓷壓電感測器與白光干涉儀量測脈衝雷射作用產生之應力與板件變形,且分別針對不同水膜厚度、試件厚度以及不同雷射加工條件進行討論。在數值分析部分,考慮材料之彈塑性行為,採用單純力學模式以有限元素軟體計算雷射引發應力造成板件變形與殘留應力,並與實驗結果比較。

    結果顯示當雷射能量不足使試件表面產生熔融或汽化反應時,雷射引發之應力主要為雷射作用過程中所產生之熱應力與輻射壓力效應;當試件表面產生熔融或汽化,在水膜覆蓋下,剝蝕效應與電漿產生之回彈壓力將使應力顯著增加,且應力與變形會隨著雷射功率、脈衝作用時間、水膜厚度的增加而增加,但隨板件厚度增加而減少。

    The aim of this study is to analyze the phenomena of the laser induced stress and deformation on the metallic plate with a long pulse laser, and investigate the effects of the water film on the substrate experimentally and numerically. In the experiment, an Nd-YAG laser was used as a pulse energy source to heat the copper and 304 stainless steel plates respectively. The stress and plate deformation have been measured with ceramic piezoelectric transducers and white light interferometer respectively. With various thicknesses of the water film and substrate, the effects of the process parameters were investigated in the experiment. Furthermore a finite element software was adopted to calculate plate deformation, residual stress and strain in the numerical analysis.

    It was shown that the main sources of the stress terms at low intensity radiations are the thermal stress and radiation pressure produced directly by the laser interaction. However, at the focus of the laser beam, a strong stress response due to the recoil pressure produced by the ablation and plasma mechanisms on the stainless steel substrate might occur. The stress could be enlarged by covering the water film on the substrate. It can be found that the stress and deformation increases with the laser power, pulse duration time, and thickness of water film in the present study.

    摘要……………………………………………………………………Ⅰ Abstract……………………………………………………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………VIII 圖目錄…………………………………………………………………IX 符號說明………………………………………………………………XVI 第一章 緒論……………………………………………………………1 1-1 研究目的…………………………………………………………1 1-2 文獻回顧…………………………………………………………3 1-2.1 雷射引發應力之機制…………………………………………3 1-2.2 約束層與披覆層對雷射引發應力之影響……………………5 1-3 雷射引發成型研究………………………………………………7 1-4 本文架構…………………………………………………………8 第二章 相關理論………………………………………………………9 2-1 光壓現象…………………………………………………………9 2-2 雷射作用引發熱應力..…………………………………………10 2-3 雷射剝蝕引發之應力…..………………………………………13 2-4 電漿引發回彈壓力公式…..……………………………………14 2-5 短脈衝與長脈衝雷射作用之差異………………………………19 2-6 有限元素分析理論………………………………………………20 2-6.1 基本假設………………………………………………………20 2-6.2 應力應變增量關係……………………………………………20 2-6.2.1 彈性應變增量………………………………………………21 2-6.2.2 塑性應變增量………………………………………………21 2-6.3 力平衡方程式…………………………………………………24 2-6.4 有限元素程式化………………………………………………25 2-7 分析軟體簡介……………………………………………………27 第三章 雷射脈衝成型實驗……………………………………………29 3-1 實驗配置與步驟…………………………………………………29 3-2 壓電轉換器之訊號特性…………………………………………31 3-3 雷射光強度觀測實驗……………………………………………33 3-4 雷射脈衝成型實驗結果…………………………………………36 3-4.1 雷射焦點距離與應力的關係…………………………………37 3-4.2 雷射脈衝作用時間與應力及板件變形的關係………………43 3-4.3 水膜厚度與應力及板件變形的關係…………………………55 3-4.4 試件厚度與應力及板件變形的關係…………………………58 3-5 結果與討論………………………………………………………61 第四章 有限元素分析…………………………………………………63 4-1 脈衝應力作用之板件變形分析…………………………………63 4-2 ABAQUS範例驗證…………………………………………………63 4-3 加工試件幾何尺寸與有限元素模型……………………………66 4-4 材料性質…………………………………………………………68 4-5 初始條件與邊界條件……………………………………………68 4-6 脈衝雷射引發應力導致板件產生殘留應力之定性描述………70 4-7 參數分析與討論…………………………………………………72 4-7.1 壓力負載的影響………………………………………………72 4-7.2 壓力作用時間與變形量的關係………………………………83 4-7.3 試件厚度與變形量的關係……………………………………85 4-7.4 板件變形輪廓…………………………………………………86 4-7.5 數值模擬結果與實驗結果之比較……………………………87 4-8 結果與討論………………………………………………………89 第五章 綜合討論與建議………………………………………………92 5-1 綜合討論…………………………………………………………92 5-1.1 影響引發應力與變形之因素討論……………………………95 5-2 相關建議與未來發展……………………………………………96 參考文獻…………………………………………………………………97 附錄A 壓電感測器電壓響應…………………………………………100 附錄B PZT訊號量測結果……………………………………………102 附錄C 白光干涉儀量測結果…………………………………………106 附錄D 驗證之範例……………………………………………………112 附錄E 銅試件PZT訊號量測結果……………………………………115 附錄F 不均勻負載作用之試件底面位移量…………………………120 附錄G 有限元素分析之誤差…………………………………………122 自述………………………………………………………………………126

    [1]Steen W. M., “Laser material processing”, 2nd ed., Springer Verlag, 1998.
    [2]Ding K., Ye, L., “Laser shock peening performance and process simulation”, Woodhead, 2006.
    [3]Wu M. C., Jain A., Tsai J. C., “Recovery of Stiction-Failed MEMS Structures Using Laser-Induced Stress Waves”, Journal of Microelectromechanical Systems, v13, n4, 2004.
    [4]Germain C., Charron L., Lilge L., Tsui Y. Y., “Electrodes for microfluidic devices produced by laser induced forward transfer”, Applied surface science, v253, n19, p8328-8333, 2007.
    [5]Scruby C. B., Drain L. E., “Laser ultrasonics techniques and applications”, Adam Hilger ,New York,1990.
    [6]Hoffman C. G., “Laser-target interactions”, Journal of Applied Physics, v45, n5, 1974.
    [7]Fairand B. P., Clauer A. H., “Laser generation of high-amplitude stress waves in materials”, Journal of Applied Physics, v50, n3, p 1497-1502, 1979.
    [8]O’Keefe J. D., Skeen C. H., “Laser-induced stress-wave and impulse augmentation”, Applied Physics Letters, v21, n10, 1972.
    [9]Fox J. A., “Effect of water and paint coatings on laser-irradiated targets”, Applied Physics Letters, v24, n10, p461-464, 1974.
    [10]Yang L. C., “Stress waves generated in thin metallic films by a Q-switched ruby laser”, Journal of Applied Physics, v45, n6, p2601-2608, 1974.
    [11]Cottet F., Romain J. P., “Formation and decay of laser-generated shock waves”, Physical Review A, v25, n1, 1982.
    [12]Fabbro R., Fournier J., Ballard P., “Physical study of laser-produced plasma in confined geometry” , Journal of Applied Physics, v68, n2, p775-784, 1990.

    [13]Peyre P., Fabbro R., “Laser shock processing: a review of the physics and applications”, Optical and Quantum Electronics, v27, p1213-1229, 1995.
    [14]Masse J. E., Barreau G., “Laser generation of stress waves in metal”, Surface and Coatings Technology, v70, n2-3, p231-234, 1995.
    [15]Couturier S., De Resseguier T., Romain J. P., “Shock profile induced by short laser pulses”, Journal of Applied Physics, v79, n12, p9338, 1996.
    [16]Sano Y., Mukai N., Okazaki K., “Residual stress improvement in metal surface by underwater laser irradiation”, Nuclear Instruments and Method in Physics B, v121, n1-4, p432-436, 1997.
    [17]Hong X., Wang S., Guo D., “Confining Medium and Absorptive Overlay: Their Effects on a Laser- induced Shock Wave”, Optics and Lasers in Engineering, v29, n6, p447-455, 1998.
    [18]Braisted W., Brockman R., “Finite element simulation of laser shock peening” v21, n7, p719-724, 1999.
    [19]Kannatey-Asibu E., Elijah Kannatey-Asibu Jr., “Principles of Laser Materials Processing”, 1st, Wiley, 2009.
    [20]Namba Y., “Laser Forming of Metal and Alloys”, Proceedings of LAMP, Osaka, p601-606, 1987.
    [21]Geiger M., Vollertsen F., Deinzer G., “Flexible straightening of car body shells by laser forming” , Sheet Metal and Stamping Symping Symposium SAE Special Publication, n944, SAE, p37-44, 1993.
    [22]Geiger M., Arnet H., Vollertsen F., “Laser Forming”, Manufacturing Systems, n24, v1, p43-47, 1995.
    [23]Yau C. L., Chan K. C., Lee W. B., “Laser Bending of Leadframe Materials”, Journal of Materials Processing Technology, v82, p117-121, 1998.
    [24]Ocana J. L., Morales M., Molpeceres C., “Short pulse laser microforming of thin metal sheets for MEMS manufacturing”, Applied Surface Science, v254, n4, p997-1001, 2007.
    [25]張永康, 高立, “激光衝擊TA2板料變形的理論分析與實驗研究”, 中國激光, v33, n9, p1282-1287, 2006.
    [26]Planck M., “The theory of heat radiation”, Dover, 1991.
    [27]Takaya Y., “The Optical Radiation Pressure Microprobe Unit and Nikon”, 2008. http://www.nikon.com/about/technology/field/2008/micro.htm
    [28]Berthe L., Fabbro R., Peyre P., “Shock waves from a water-confined laser-generated plasma”, Journal of Applied Physics, v82, n6, p2826, 1997.
    [29]Chen W. F., Han D. J., “Plasticity for Structural Engineers”, Springer-Verlag, 1988.
    [30]Getting Started with ABAQUS/Standard, H.K.S. Inc., Pawtuckett, RI, 1998.
    [31]Doebelin E. O., “Measurement systems application and design”, 4th ed., McGraw-Hill, 1990.
    [32]Timoshenko S., Woinowsky-krieger S., “Theory of plates and shells”, 2nd ed., McGraw-Hill, 1959.
    [33]愛發股份有限公司編著, “ABAQUS實務入門引導”, 全華科技圖書股份有限公司印行, 2005.
    [34]American Society for metals, “Metals Handbook”, The Society, 1994.
    [35]Kalpakjian S., Schmid S. R., “Manufacturing processes for engineering materials”, 4th ed., Prentice Hall, 2002.
    [36]Meguid S. A., Shagal G., Stranart J. C., “Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses”, Finite elements in analysis and design, v31, n3, p179-191, 1999.

    下載圖示 校內:2020-08-17公開
    校外:2020-08-17公開
    QR CODE