| 研究生: |
阮重蘭 Nguyen, Trong Lan |
|---|---|
| 論文名稱: |
添加鎵對錫-58鉍/銅界面反應之影響 Effects of Ga addition upon Sn-58Bi/ Cu Interfacial reactions |
| 指導教授: |
林士剛
Lin, Shih-kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 外文關鍵詞: | Interfacial reactions, Low temperature solder, Phase equilibrial, ternary system |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ABSTRACT
Sn58Bi-xGa alloys are potential candidates to use as a low melting temperature lead free solders. The interfacial reactions between Sn58Bi-xGa (x = 0.25, 0.5, 1.0, 2.0, 3.0 wt. %) molten solders and Cu substrates have been are investigated to understand the effects of Ga addition upon the Sn58Bi/Cu interfacial reactions.
There are four intermetallic compounds θ-phase (CuGa2), γ-phase (Cu9Ga4), η-phase (Cu6Sn5) and ε-phase (Cu3Sn) observed in the interfacial reaction region. The growth rate of γ-phase follow diffusion controlled mechanism at 200 degree celsius while it comply interfacial reaction controlled mechanism at 230 degree celsius.
Two abnormal phenomena were observed at these Sn58Bi-2Ga/Cu couples, i.e. (1) the formation of the bulky grains of single θ-phase or the γ/θ core-shell structure depending on the reaction time, and (2) the thinning of the interfacial θ-layer as reaction time increased. The γ-layers grows thicker for longer reaction time, which is likely resulted from interfacial reactions. However, the θ-phase become thinner with longer reaction time imply that θ-phase transferred to γ-phase, in addition, it was precipitated from the molten solder during solidification at the end of reaction. This assumption is agreement with the connection of tie-line between liquid phase and θ-phase, between liquid phase and γ-phase in 200 degree celsius isothermal section of Sn58Bi-Cu-Ga extrapolated by using CALPHAD method based on thermodynamic parameters of six binary systems, Sn-Bi, Sn-Cu, Sn-Ga, Bi-Cu, Bi-Ga, Cu-Ga and ternary interaction parameters of liquid phase in Bi-Cu-Sn system. Thus, the diffusion path for shorter reaction time is L/θ/γ/Cu and L/γ/Cu.
With longer reaction time or the Ga content in solder was depleted, θ-phase completely transfer to γ-phase, then ε-phase formed between γ-phase (Cu9Ga4) and Cu, after that η-phase formed between γ-phase and ε-phase. Finally, γ-phase (Cu9Ga4) was consumed in η-phase and ε-phase. Therefore, the diffusion path form L/θ/γ/Cu shifted to L/γ/Cu, and for prolonged reaction time the diffusion path form L/γ/η/ε/Cu shifted to L/η/ε/Cu. These observations are consistent with the presuming base on three dimensional 200 degree celsius isothermal section of Cu-Ga-Bi-Sn quaternary system with two isothermal sections of Cu-Ga-Sn58Bi and Cu-Ga-Sn ternary system extrapolated by using CALPHAD method based on thermodynamic parameters of six binary systems, Sn-Bi, Sn-Cu, Sn-Ga, Bi-Cu, Bi-Ga, Cu-Ga and ternary interaction parameters of liquid phase of Bi-Cu-Sn system.
The γ-phase formed at the interfacial reaction can act as a diffusion barrier to limit the overgrowth of η-phase and ε-phase. The effect of Ga addition upon the Sn58Bi/Cu interfacial reactions is decrease the total thickness of IMCs at the interfacial reactions.
Keywords: Interfacial reactions; Low temperature solder; Phase equilibrial; ternary system.
REFERENCES
1. Seyyedi, J., Thermal fatigue behaviour of low melting point solder joints. Soldering & Surface mount technology, 1993. 5(1): p. 26-32.
2. Lau, H.J., Ball grid array technology, 1995, New York: MC Graw-Hill. 1.
3. Vianco, P.T., Kilgo, A.C., Grant, R., Intermetallic compound layer growth by solid state reactions between 58Bi-42Sn solder and copper. Journal of Electronic Materials, 1995. 24(10): p. 1493-1505.
4. Zeng, K., Tu, K. N., Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials science and engineering: R: reports, 2002. 38(2): p. 55-105.
5. Tu, K.N., Solder joint technology: Materials, Properties, and Reliability, 2007, New York: Springer. 1.
6. Mei, Z. and J. Morris, Characterization of eutectic Sn-Bi solder joints. Journal of Electronic Materials, 1992. 21(6): p. 599-607.
7. Frear, D.R., Tu, K. N., Metallurgical Factors, in Area Array Interconnection Handbook2001, Springer. p. 1108-1144.
8. Parliament, E., Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment and on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Communities, 2000.
9. Okamoto, H., Alloy Phase Diagram, in ASM Handbook, 1990, ASM International: USA.
10. Tong, X.C., Thermal Interface Materials in Electronic Packaging, in Advanced Materials for Thermal Management of Electronic Packaging, 2011: Springer Series.
11. Suganuma, K., Advances in lead-free electronics soldering. Current Opinion in Solid State and Materials Science, 2001. 5(1): p. 55-64.
12. Shahil, K.M.F., Balandin, A. A., Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications, 2012. 152(15): p. 1331-1340.
13. Yoon, J.W., Lee, C. B., Jung, S. B., Interfacial Reactions Between Sn-58 mass% Bi Eutectic Solder and (Cu, Electroless Ni-P/Cu) Substrate. Materials Transactions(Japan), 2002. 43(8): p. 1821-1826.
14. Takaku, Y., Liu, X. J., Ohnuma, I., Kainuma, R., Ishida, K., Interfacial reaction and morphology between molten Sn base solders and Cu substrate. Materials Transactions, 2004. 45(3): p. 646-651.
15. Dong, W., Shi, Yaowu., Xia, Zhidong., Lei, Yongping., Guo, Fu., , Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy. Journal of Electronic Materials, 2008. 37(7): p. 982-991.
16. Shang, P.J., Liu, Z. Q., Li, D. X., Shang, J. K.,, Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints. Scripta Materialia, 2008. 58(5): p. 409-412.
17. Shang, P.J., Liu, Z. Q., Li, D. X., Shang, J. K., TEM observations of the growth of intermetallic compounds at the SnBi/Cu interface. Journal of Electronic Materials, 2009. 38(12): p. 2579-2584.
18. Hu, X., Li, Yulong., Min, Zhixian., Interfacial reaction and growth behavior of IMCs layer between Sn–58Bi solders and a Cu substrate. Journal of Materials Science: Materials in Electronics, 2013: p. 1-8.
19. Li, J.F., Mannan, S. H., Clode, M. P., Whalley, D. C., Hutt, D. A., Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects. Acta Materialia, 2006. 54(11): p. 2907-2922.
20. Lin, S.K., Chen, S. W., Interfacial reactions in the Sn-20 at.% In/Cu and Sn-20 at.% In/Ni couples at 160 degrees C. Journal of Materials Research, 2006. 21(7): p. 1712-1717.
21. Liu, N.S., Lin, K. L., The effect of Ga content on the wetting reaction and interfacial morphology formed between Sn-8.55Zn-0.5Ag-0.1Al-xGa solders and Cu. Scripta Materialia, 2006. 54(2): p. 219-224.
22. Vollweiler, F.O., Intermetallic Growth at the Interface Between Copper and Bismuth-Tin Solder, 1993, DTIC Document.
23. Porter, D.A., Easterling, K. E., Phase Transformations in Metals and Alloys. the second ed. Chapter 1: Thermodynamics and Phase Diagrams, 2004, United States of America: Taylor & Francis Group.
24. Kodentsov, A.A., Basin, F.G ., van Loo, F.J.J., Application of diffusion couples in phase diagram determination, in Methods for Phase Diagram Determination, 2007, Oxford, Elsevier Science Ltd.
25. Frear, D.R., Jones, W. B., Kinsman, K. R., Solder Mechanics "A state of the Art Assessment", 1990, Santa Fe, New Mexico.
26. Seltz, H., Dunkerley, F. J., A Thermodynamic Study of the Tin—Bismuth System. Journal of the American Chemical Society, 1942. 64(6): p. 1392-1395.
27. Sharkey, R.L., Pool, M. J., Partial Heats of Mixing in the Bi-Sn system. Metallurgical Transactions, 1972. 3(7): p. 1773-1776.
28. Oelsen, W., Golucke, K. F., Thermodynamic Analysis, XI. Calorimetry and Thermodynamics of Bismuth-Tin Alloys,. Arch. Eisenhuttenw, 1958. 29(11): p. 9.
29. Ohtani, H., Ishida, K., A thermodynamic study of the phase-equilibria in the Bi-Sn-Se system. Journal of Electronic Materials, 1994. 23(8): p. 747-755.
30. Asryan, N.A., Mikula, A. , Thermodynamic Properties of Bi–Sn Melts. Inorganic materials, 2004. 40(4): p. 386-390.
31. Lee, B.J., Oh, C. S., Shim, J. H., Thermodynamic assessments of the Sn-In and Sn-Bi binary systems. Journal of Electronic Materials, 1996. 25(6): p. 983-991.
32. Braga, M.H., Vizdal, J., Kroupa, A., Ferreira, J., Soares, D., Malheiros, L. F., The experimental study of the Bi-Sn, Bi-Zn and Bi-Sn-Zn systems. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2007. 31(4): p. 468-478.
33. Vizdal, J., Braga, M. H., Kroupa, A., Richter, K. W., Soares, D., Malheiros, L. F., Ferreira, J. E., Thermodynamic assessment of the Bi-Sn-Zn system. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2007. 31(4): p. 438-448.
34. Manasijevic, D., Minic, D., Zivkovic, D., Katayama, I., Vrestal, J., Petkovic, D., Experimental investigation and thermodynamic calculation of the Bi-Ga-Sn phase equilibria. Journal of Physics and Chemistry of Solids, 2009. 70(9): p. 1267-1273.
35. Girard, C., Bros, J. P., Agren, J., Kaufman, L., A comparison of experimental and CALPHAD analyses of the aluminum-bismuth-gallium system. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1985. 9(2): p. 129-141.
36. Zivkovic, D., Manasijevic, D., Zivkovic, Z., Comparative thermodynamic investigation of the Ga-Bi binary system: experimental determination of enthalpies of mixing and activity estimation for liquid Ga-Bi alloys. Journal of Thermal Analysis and Calorimetry, 2005. 79(1): p. 71-77.
37. Anderson, T.J., Ansara, I., The Ga-Sn (Gallium-Tin) System. Journal of Phase Equilibria, 1992. Vol. 13(No.2): p. 7.
38. Yoon, J.W., Jung, S. B., Investigation of interfacial reactions between Sn-5Bi solder and Cu substrate. Journal of Alloys and Compounds, 2003. 359: p. 202-208.
39. Gierlotka, W., Chen, S. W., Lin, S. K., Thermodynamic description of the Cu-Sn system. Journal of Materials Research, 2007. 22(11): p. 3158-3165.
40. Li, M., Du, Z. M., Guo, C. P., Li, C. R., Thermodynamic optimization of the Cu-Sn and Cu-Nb-Sn systems. Journal of Alloys and Compounds, 2009. 477(1-2): p. 104-117.
41. Chakrabarti, D.J., Laughlin, D. E., The Bi-Cu (Bismuth copper) system. Bulletin of Alloy Phase Diagram, 1984. Vol. 5(No. 2): p. 7.
42. Li, J.B., Ji, L., Liang, J. K., Zhang, Y., Luo, J., Lic, C. R., Rao, G. H., A thermodynamic assessment of the copper-gallium system. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2008. 32(2): p. 447-453.
43. Muggianu, Y.M., Gambino, M., Bros, J. P., Enthalpies de Formation des Alliages Liquides Bismuth-Etain-Gallium a 723 K. Choix d'une Representation Analytique des Grandeurs d'Exces Integrales et Partielles de Melange. J. Chim. Phys., 1975. 71: p. 5.
44. Zivkovic, D., Katayama, I., Gomidzelovic, L., Manasijevic, D., Novakovic, R., Comparative thermodynamic study and phase equilibria of the Bi-Ga-Sn ternary system. International Journal of Materials Research, 2007. 98(10): p. 1025-1030.
45. Katayama, I., Zivkovic, D., Novakovic, R., Yamashita, H., Experimental study on gallium activity in the liquid Ga-Bi-Sn alloys using the EMF method with zirconia solid electrolyte. International Journal of Materials Research, 2008. 99(12): p. 1330-1335.
46. Doi, K., Ohtani, H., Hasebe, M., Thermodynamic study of the phase equilibria in the Sn-Ag-Bi-Cu quaternary system. Materials Transactions, 2004. 45(2): p. 380-383.
47. Flandorfer, H., Sabbar, A., Luef, C., Rechchach, M., Ipser, H., Enthalpies of mixing of liquid Bi–Cu and Bi–Cu–Sn alloys relevant for lead-free soldering. Thermochimica Acta, 2008. 472(1): p. 1-10.
48. Romanowska, J., Experimtental study on thermodamic of the Bi-Cu-Sn system. Archives of Metallurgy and Materials, 2011. 56(1): p. 87-91.
49. Živković, D., Minić, D., Manasijević, D., Talijan, N., Katayama, I., Kostov, A., Thermodynamic analysis and characterization of Bi–Cu–Sn alloys as advanced lead-free solder materials for high temperature application. Journal of Materials Science: Materials in Electronics, 2011. 22(8): p. 1130-1135.
50. Cao, W., Chen, S. L., Zhang, F., Wu, K., Yang, Y., Chang, Y. A., Schmid-Fetzer, R., Oates, W. A., PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad, 2009. 33(2): p. 328-342.
51. Saunders, N., Miodownik, A. P., CALPHAD (A Comprehensive Guide), 1998, London: Elservier.
52. Lukas, H.L., Fries, S. G., Sundman, B., Computational Thermodynamics, 2007, Cambridge, UK: Cambridge University Press, .
53. Dinsdale, A.T., SGTE data for pure elements. 1991. Vol. 15: p. 108.