| 研究生: |
石旭生 Shi, Shiuh-Sheng |
|---|---|
| 論文名稱: |
膝下截肢患者在不同走路速度與穿戴不同義足下之界面壓力與步態分析 Interface Pressure and Gait Analysis in different walking speeds and Prosthetic Feet on the Below-Knee Amputees with a Prosthesis |
| 指導教授: |
周有禮
Chou, You-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 膝下截肢 、界面壓力 、義肢 、走路速度 |
| 外文關鍵詞: | Interface stresses, transtibial amputation, prosthesis, walking speed |
| 相關次數: | 點閱:122 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於膝下截肢的患者,承套是為義肢與人體殘肢接觸的部分,並且是負責義肢在人體下肢荷重時的穩定支撐。因此,殘肢與承套間的界面壓力就顯得非常重要,若設計不良就會導致殘肢受力不均 ,易造成穿戴的併發症,如:水泡、紅腫、潰瘍。感染等。 輕者造成暫時無法穿戴義肢,造成日常生活不便,重者會因疼痛而產生代償動作,最後甚至需要再截肢。
由於下肢的義肢主要是用來移動身體達到日常生活方便,所以走路時殘肢所承受的壓力與力量就非常重要。這跟靜態站立時殘肢所受的壓力與力量是完全不同的。本研究設計三種步頻(85 95 115 步/分)以控制速度,同時穿上不同義足,進行實驗,發現在步態分析部分,除了傳統義足的踝關節外,其他關節的活動角度與最大力矩皆隨著速度的加快而變大。在殘肢所受的最大力量與最大壓力部分,傳統義足隨著速度的加快而增大,而多軸義足則沒有太大的變化。力量對時間積分方面,慢速組中,三種義足並無太大不同 ,但在快速組中傳統義足就比另外兩種義足來的大,這些資料將可客觀的提供臨床義肢裝具師一個標準,同時也可作為不同族群的膝下截肢病患在選配義肢時的參考。
Interface stresses are an important consideration in stump and socket for a prosthetic limb to a person with transtibial amputation. At the stance phase of the gait cycle, the prosthetic socket is expected to support and distribute the entire weight of the patient with an amputated limb. If the stresses are too large between stump and socket, it will induce pain, discomfort and breakdown. In severe case, no prosthesis use is possible, and surgical repair of the residual limb is necessary. The objectives of this study are to analysis gait, the maximum force and pressure between stump and socket during different walking speed.
Using the motion analysis system investigated kinematics and kinetics of the gait and the Pedar system were used to investigate the maximum force and pressure between stump and socket during different walking speed.
There are 15 male subjects with transtibial amputation participated in this research. Subjects were asked to walk in three different speeds (85 steps/min, 95 steps/min, 115 steps/min ). The maximum force, maximum pressure and force-time integrals in head of fibula, patellar ligament, medial condyle of tibia, tibial end and fibular end were measured at the same time.
As the walking speed increased, the range of motion and the moment in hip knee and ankle will increased for all kinds of foot except for SACH foot in ankle. With the walking speed increased, the maximum force and pressure in those measured areas were increased significantly in SACH foot but no significant change in multiple axis foot. In slow walk speed, the force-time integrals were no significant difference for all kinds of feet, but in fast walking speed, the integral value of SACH foot was much more than single and multiple axis foot.
Walking speed will influence the maximum force and pressure in SACH foot. Multiple axis foot is the most comfortable in various walking speed. The study provided an objective and subjective data for prosthetist or physician’s prescription for amputees.
參考文獻
1. Kay HW, Newman JD. Relative incidences of new amputations. Orthot Prosthet Vol.29,No.2;3-16,1975
2. 台北榮民總醫院傷殘重建中心。下肢義肢支架及輪椅使用講習會。September 1994;台北
3. 連倚南。截肢與義肢。台灣醫界。;33:37-46, 民79
4. Donald G.S. ;Thom 原著; 于邦基 譯 ,義肢裝具學 , 合記圖書出版社, 台北市, 民 88
5. Fergason J.; Smith D.G., Socket considerations for the patient with a transtibial amputation. Clinical Orthopaedics & Related Research, (361):76-84, 1999.
6. Sander J.E.; Bell D.M.; Okumura R.M.; Dralle A.J., Effect of alignment changes on stance phase pressures and shear stresses on transtibial amputees: measurements from 13 transducer sites. IEEE transactions on rehabilitation engineering., 6: 21-31, 1998.
7. Reynolds D.P.; Lord M., Interface load analysis for computer-aided design of below-knee prosthetic sockets. Medical & biological engineering &computing., 30:419-426, 1992.
8. Zhang M.;Turner-Smith A.R.;Tanner A.; Roberts V.C., Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Medical Engineering & Physics, 20(3):188-98, 1998.
9. Sanders J.E., Interface mechanics in external prosthetics: review of interface stress measurement techniques. Medical & biological engineering & computing, 33: 509-516, 1995.
10. Sanders J.E.; Daly C.H.; Burgess E.M., Clinical measurement of normal and shear stresses on a trans-tibial stump: characteristics of wave –form shapes during walking., Prosthetics and Orthotics Internatonal,17,38-48, 1993.
11. Zachariah S.G.; Sanders J.E., Interface mechanics in lower-limb external prosthetics : a review of finite element models. IEEE transactions on rehabilitation engineering., 4: 288-302, 1996.
12. Sander J.E.; Daly C.H., Measurement of stresses in three orthogonal directions at residual limb-prosthetic socket interface. IEEE transactions on rehabilitation engineering.,1: 79-85, 1993.
13. Williams R.B.; Porter D.; Roberts V.C.; Regan J.F., Triaxial force transducer for investigating stresses at the stump /socket interface. Medical & biological engineering &computing., 30:89-96, 1992.
14. Zachariah S.G.; Sanders J.E., Standing interface stresses as a predictor of walking interface stresses in the trans-tibial prosthesis. Prosthetics & Orthotics International., 25(1):34-40, 2001.
15. Blumentritt S., A new biomechanical method for determination of static prosthetic alignment. Prosthetics and orthotics international.21: 107-113, 1997.
16. Vaughan CL, Davis BL, O’Connor JC. Dynamics of human gait. Illinois, Champaign: Human Kinetics Publishers, 1992.
17. Katoh Y, Chao EY, Laughman RK. Biomechanical analysis of foot function during gait and clinical applications. Clini Orthop Relat Res Vol.177; 23-33, 1983.
18. Perry J. Gait analysis: Normal and pathological function. NJ: Slack Incorporated, 1992.
19. Robinson JL, Smidt GL, Arora JS. Accelerographic, temporal and distance gait factors in below-knee amputees. Phys Ther Vol.57; 898-904, 1977.
20. Goh JCH, Solomonidis SE, Spence WD, Paul JP. Biomechanical evaluation of SACH and uniaxial feet. Prosthet Orthot Int Vol.8; 147-154, 1984.
21. Appoldt F., Stump-socket pressure in lower extremity prostheses. Biomechanics., 1: 247-257, 1968.
22. Hachisuka K.; Takahashi M.; Ogata H.; Ohmine S.; Shitama H.; Shinkoda K., Properties of the flexible pressure sensor under laboratory conditions simulating the internal environment of the total surface bearing socket. Prosthetics and orthotics international., 22: 186-192, 1998.
23. Sanders J.E., Normal and shear interface stresses in lower-limb prosthetics. IEEE engineering in medicine & biology society 11th annual international conference.
24. Sanders J.E.; Lam D.; Dralle A.J.;Okumura R., Interface pressures and shear stresses at thirteen socket sites on two persons with transtibial amputation. Journal of Rehabilitation Research & Development., 34(1):19-43, 1997.
25. Sanders J.E.; Daly C.H., Interface pressures and shear stresses: sagittal plane angular alignment effects in three trans-tibial amputee case studies. Prosthetics & Orthotics International., 23(1):21-9, 1999.
26. Burgess E.M.; Moore A.J., A study of interface pressures in the below-knee prosthesis (physiological suspension: an interim report). Bulletin of Prosthetics Research., 58-70, 1977.
27. Schreiner R.E.; Sanders J.E., A silhouetting shape sensor for the residual limb of a below-knee amputee. IEEE transactions on rehabilitation engineering., 3: 242-253, 1995.
28. Sutherland DH, Olshen RA, Cooper L, Woo SLY. The development of mature walking. J Bone Joint Surg, Vol.62-A, No.3; 336-353, 1980.