| 研究生: |
張琇雯 Chang, Hsiu-Wen |
|---|---|
| 論文名稱: |
20呎貨櫃空間熱舒適性及空調耗電量探討 Investigation on Thermal Comfort and Energy Consumption of Air Conditioning in 20-foot Container Buildings |
| 指導教授: |
潘振宇
Pan, Chen-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 熱舒適性 、空調耗電 、空調設定溫度 、換氣次數 、貨櫃建築 |
| 外文關鍵詞: | Thermal comfort, Energy consumption, Set temperature, Air change rate, Container Building |
| 相關次數: | 點閱:53 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
貨櫃在建築領域的應用具有多項優勢,包括耗費時間和人力成本較低、結構穩固且具有固定模矩等,不論是在臨時性或永久性建築上皆有其發展空間,同時亦可減少廢棄物和二氧化碳排放。由於其規模較小,常以分離式空調滿足冷房需求;在缺乏混合回風及外氣的系統設計下,外氣容易直接影響室內熱環境及設備耗電量。本研究以20呎貨櫃建築為研究對象,欲探討不同空調系統設定下的室內熱環境差異,以及其對人員感受、設備耗電量的影響,並總結日常使用中合適的空調系統設定值。
研究內容由空調設定溫度及換氣次數兩個面向切入,透過實測探討其對室內熱環境的影響。其中,實測項目包含針對生理及心理層面的熱舒適性調查,以及溫度、二氧化碳濃度和設備耗電測量等,並在部分項目中納入了血壓量測。實驗結果顯示,將空調溫度設定在24℃時,人員有最高的舒適度及接受度,同時不會產生過多生理層面的不適反應。而在相同的空調設定溫度下,增加換氣次數雖會造成耗電量提升5~20%不等,且能將室內汙染物控制在標準值;若要在兩者間取得平衡,則應將換氣次數定在4 ACH,此結果與現行換氣量相關規範吻合。另外,若不考慮耗電量的增加,則將換氣次數提高至6~8 ACH可進一步提升整體熱舒適性。
建議若對現有的空調環境感到不滿意,宜優先調整換氣次數,以降低室內汙染物及提高空氣流動感為主,即可在相近的耗電量下,達到較佳的熱舒適性;並避免因降低設定溫度導致的耗電量提升,或是引起冷房環境造成的不適反應。
Recent years, container building has gradually become a common choice for temporary and permanent buildings. This study focuses on 20-foot container buildings to investigate the variations in indoor thermal environments under different air conditioning system settings, and their impacts on thermal comfort and energy consumption. The research explores air conditioning settings from set temperature and air change rate, using experimental measurements to assess their effects on thermal environments. The experimental measurements include assessments of physiological and psychological thermal comfort, as well as measurements of temperature, carbon dioxide levels, and energy consumption.
The results indicate that setting the air conditioning temperature at 24°C achieves the highest level of occupants’ thermal comfort and acceptance without causing significant physiological discomfort. When maintaining the same set temperature, increasing air change rate leads to a 5% to 20% increase in energy consumption, but effectively controls indoor pollutant levels within acceptable standards. Balancing between energy consumption and thermal comfort, an air change rate per hour (ACH) of 4 aligns with existing ventilation standards. Furthermore, increasing the air change rate to 6-8 ACH, disregarding energy consumption, further enhances overall thermal comfort.
The study suggests that if dissatisfaction with the current air conditioning environment arises, adjusting air change rate should be prioritized to reduce indoor pollutants and improve airflow, achieving better thermal comfort at comparable energy consumption levels. This approach avoids the increased energy consumption associated with lowering temperature settings or discomfort caused by overly cold indoor environments.
Agency, E. P. (2000). Energy Cost and IAQ Performance of Ventilation Systems and Controls. Retrieved from
Amin, N. D. M., Akasah, Z. A., & Razzaly, W. (2015). Architectural Evaluation of Thermal Comfort: Sick Building Syndrome Symptoms in Engineering Education Laboratories. Procedia - Social and Behavioral Sciences, 204, 19-28.
Arata, S., & Kawakubo, S. (2022). Study on productivity of office workers and power consumption of air conditioners in a mixed-mode ventilation building during springtime. Building and Environment, 214, 108923.
Ashrae, S. (2010). ASHRAE-55-2010. In.
Ashrae, S. (2017). ASHRAE-55-2017. In.
Ashrae, S. (2022). ASHRAE Standard 62.1-2022. In.
Azuma, K., Kagi, N., Yanagi, U., & Osawa, H. (2018). Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International, 121, 51-56.
Brook, R. D., Weder, A. B., & Rajagopalan, S. (2011). “Environmental Hypertensionology” The Effects of Environmental Factors on Blood Pressure in Clinical Practice and Research. The Journal of Clinical Hypertension, 13(11), 836-842.
Chen, A., & Chang, V. W. C. (2012). Human health and thermal comfort of office workers in Singapore. Building and Environment, 58, 172-178.
Chen, C.-P., Hwang, R.-L., Chang, S.-Y., & Lu, Y.-T. (2011). Effects of temperature steps on human skin physiology and thermal sensation response. Building and Environment, 46(11), 2387-2397.
Commission, C. B. S. (2022). California Energy Code, Title 24, Part 6. Retrieved from https://codes.iccsafe.org/content/CAEC2022P1
Damiati, S. A., Zaki, S. A., Rijal, H. B., & Wonorahardjo, S. (2016). Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Building and Environment, 109, 208-223.
Damm, A., Köberl, J., Prettenthaler, F., Rogler, N., & Töglhofer, C. (2017). Impacts of +2°C global warming on electricity demand in Europe. Climate Services, 7, 12-30.
de Dear, R. J. (1998). A global database of thermal comfort field experiments. ASHRAE Transactions, 104, 1141.
Dimitroulopoulou, C., & Bartzis, J. (2014). Ventilation rates in European office buildings: A review. Indoor and Built Environment, 23(1), 5-25.
Dutton, S. M., & Fisk, W. J. (2014). Energy and indoor air quality implications of alternative minimum ventilation rates in California offices. Building and Environment, 82, 121-127.
Federspiel, C. C., Bridges, B., & Langkilde, G. (1998). Statistical analysis of unsolicited thermal sensation complaints in commercial buildings/ Discussion. ASHRAE Transactions, 104, 912.
Fong, K. F., Chow, T. T., Li, C., Lin, Z., & Chan, L. S. (2010). Effect of neutral temperature on energy saving of centralized air-conditioning systems in subtropical Hong Kong. Applied Thermal Engineering, 30(13), 1659-1665.
Fu, C., zheng, Z., Mak, C. M., Fang, Z., Oladokun, M. O., Zhang, Y., & Tang, T. (2020). Thermal comfort study in prefab construction site office in subtropical China. Energy and Buildings, 217, 109958.
Gilani, S. I. u. H., Khan, M. H., & Pao, W. (2015). Thermal Comfort Analysis of PMV Model Prediction in Air Conditioned and Naturally Ventilated Buildings. Energy Procedia, 75, 1373-1379.
Humphreys, M. A., & Hancock, M. (2007). Do people like to feel ‘neutral’?: Exploring the variation of the desired thermal sensation on the ASHRAE scale. Energy and Buildings, 39(7), 867-874.
Hwang, R.-L., & Cheng, M.-J. (2007). Field Survey on Human Thermal Comfort Reports in Air-Conditioned Offices in Taiwan. The Open Construction and Building Technology Journal, 1, 8-13.
Hwang, R.-L., Cheng, M.-J., Lin, T.-P., & Ho, M.-C. (2009). Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot–humid regions. Building and Environment, 44(6), 1128-1134.
Indraganti, M., Ooka, R., Rijal, H. B., & Brager, G. S. (2014). Adaptive model of thermal comfort for offices in hot and humid climates of India. Building and Environment, 74, 39-53.
ISO-7730. (2005). In.
Jahangir, M. H., Salehi, M., & Fakouriyan, S. (2023). Cost of energy consumption of an air conditioning system to reduce the risk of COVID-19 infection in a bank building. Energy Reports, 10, 3335-3354.
Jayswal, M. (2012). To Examine the Energy Conservation Potential of Passive & Hybrid Downdraught Evaporative Cooling: A Study for Commercial Building Sector in Hot and Dry Climate of Ahmedabad. Energy Procedia, 30, 1131-1142.
Khoshbakht, M., Gou, Z., & Zhang, F. (2019). A pilot study of thermal comfort in subtropical mixed-mode higher education office buildings with different change-over control strategies. Energy and Buildings, 196, 194-205.
Kim, J., Tartarini, F., Parkinson, T., Cooper, P., & de Dear, R. (2019). Thermal comfort in a mixed-mode building: Are occupants more adaptive? Energy and Buildings, 203, 109436.
Koelblen, B., Psikuta, A., Bogdan, A., Annaheim, S., & Rossi, R. M. (2018). Thermal sensation models: Validation and sensitivity towards thermo-physiological parameters. Building and Environment, 130, 200-211.
Kosonen, R., & Tan, F. (2004). The effect of perceived indoor air quality on productivity loss. Energy and Buildings, 36(10), 981-986.
Lanzinger, S., Hampel, R., Breitner, S., Rückerl, R., Kraus, U., Cyrys, J., . . . Schneider, A. (2014). Short-term effects of air temperature on blood pressure and pulse pressure in potentially susceptible individuals. International Journal of Hygiene and Environmental Health, 217(7), 775-784.
Li, J., Yang, L., & Long, H. (2018). Climatic impacts on energy consumption: Intensive and extensive margins. Energy Economics, 71, 332-343.
Lück, K. (2012). Energy efficient building services for tempering performance-oriented interior spaces – A literature review. Journal of Cleaner Production, 22(1), 1-10.
Luo, M., Cao, B., Damiens, J., Lin, B., & Zhu, Y. (2015). Evaluating thermal comfort in mixed-mode buildings: A field study in a subtropical climate. Building and Environment, 88, 46-54.
McNeill, V. F. (2022). Airborne Transmission of SARS-CoV-2: Evidence and Implications for Engineering Controls. Annu Rev Chem Biomol Eng, 13, 123-140.
Men, C., Wang, S., & Zou, Z. (2020). Experimental study on tracer gas method for building infiltration rate measurement. Building Services Engineering Research and Technology, 41(6), 745-757.
Mendell, M. J., & Mirer, A. G. (2009). Indoor thermal factors and symptoms in office workers: findings from the US EPA BASE study. Indoor Air, 19(4), 291-302.
Modesti, P. A. (2013). Season, temperature and blood pressure: A complex interaction. European Journal of Internal Medicine, 24(7), 604-607.
Nakaya, T., Matsubara, N., & Kurazumi, Y. (2008). Use of occupant behaviour to control the indoor climate in Japanese residences. Paper presented at the Air Conditioning and the Low Carbon Cooling Challenge, Cumberland Lodge, Windsor, UK, Network for Comfort and Energy Use in Buildings, London.
Nicol, J. F., & Humphreys, M. A. (2004). A Stochastic Approach to Thermal Comfort-Occupant Behavior and Energy Use in Buildings/DISCUSSION. ASHRAE Transactions, 110, 554-568.
NIOSH. (2019). NIOSH Pocket Guide to Chemical Hazards. Appendix G: 1989 Air Contaminants Update Project – Exposure Limits NOT in Effect. Retrieved from https://www.cdc.gov/niosh/npg/nengapdxg.html
Park, J. S., Jee, N.-Y., & Jeong, J.-W. (2014). Effects of types of ventilation system on indoor particle concentrations in residential buildings. Indoor Air, 24(6), 629-638.
Persily, A. (2015). Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62. Building and Environment, 91, 61-69.
Persily, A., & Dols, W. (1990). The Relation of CO2 Concentration to Office Building Ventilation. Air change rate and airtightness in buildings.
Reda, I., AbdelMessih, R. N., Steit, M., & Mina, E. M. (2023). Exhaled CO2-based tracer gas for measuring ventilation rates and energy consumption with application to worship places. Ain Shams Engineering Journal, 14(6), 102138.
REHVA. (2021). REHVA COVID-19 Guidance version4.1. In.
Santos, H. R. R., & Leal, V. M. S. (2012). Energy vs. ventilation rate in buildings: A comprehensive scenario-based assessment in the European context. Energy and Buildings, 54, 111-121.
Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., & Fisk, W. J. (2012). Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environmental Health Perspectives, 120(12), 1671-1677.
Shendell, D. G., Prill, R., Fisk, W. J., Apte, M. G., Blake, D., & Faulkner, D. (2004). Associations between classroom CO2 concentrations and student attendance in Washington and Idaho.
Sherman, M. H. (1990). Tracer-gas techniques for measuring ventilation in a single zone. Building and Environment, 25(4), 365-374.
Sikram, T., Ichinose, M., & Sasaki, R. (2020). Assessment of Thermal Comfort and Building-Related Symptoms in Air-Conditioned Offices in Tropical Regions: A Case Study in Singapore and Thailand. Frontiers in Built Environment, 6.
Taib, N. S. M., Ahmad Zaki, S., Rijal, H. B., Razak, A. A., Hagishima, A., Khalid, W., & Ali, M. S. M. (2022). Associating thermal comfort and preference in Malaysian universities’ air-conditioned office rooms under various set-point temperatures. Journal of Building Engineering, 54, 104575.
Tao, Q., Naveau, M., Tantet, A., Badosa, J., & Drobinski, P. (2024). Sub-regional variability of residential electricity consumption under climate change and air-conditioning scenarios in France. Climate Services, 33, 100426.
Tsay, Y.-S., Chen, R., & Fan, C.-C. (2022). Study on thermal comfort and energy conservation potential of office buildings in subtropical Taiwan. Building and Environment, 208, 108625.
Wang, M., Li, Q., Wang, F., Yuan, Z., Wang, L., & Zhou, X. (2023). Residential indoor thermal environment investigation and analysis on energy saving of air conditioning in hot summer and warm winter zone in China. Urban Climate, 47, 101369.
Wargocki, P., & Djukanovic, R. (2003). Estimate of an economic benefit from investment in improved indoor air quality in an office building. Healthy Buildings 2003 - Proceedings 7th International Conference, 3, 382-387.
Wargocki, P., Wyon, D. P., Baik, Y. K., Clausen, G., & Fanger, P. O. (1999). Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity in an Office with Two Different Pollution Loads. Indoor Air, 9(3), 165-179.
Wargocki, P., Wyon, D. P., & Fanger, P. O. (2000). Productivity is affected by the air quality in offices. Proceedings of Healthy Buildings, 1, 635-640.
Wu, Z., Li, N., & Schiavon, S. (2022). Experimental evaluation of thermal comfort, SBS symptoms and physiological responses in a radiant ceiling cooling environment under temperature step-changes. Building and Environment, 224, 109512.
Wu, Z., Li, N., Wargocki, P., Peng, J., Li, J., & Cui, H. (2019). Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China. Energy, 182, 471-482.
Xiong, J., Lian, Z., Zhou, X., You, J., & Lin, Y. (2015). Effects of temperature steps on human health and thermal comfort. Building and Environment, 94, 144-154.
Yang, L., Wang, F., Zhao, S., Gao, S., Yan, H., Sun, Z., . . . Zhai, Y. (2024). Comparative analysis of indoor thermal environment characteristics and occupants’ adaptability: Insights from ASHRAE RP-884 and the Chinese thermal comfort database. Energy and Buildings, 309, 114033.
Yang, L., Zhao, S., Gao, S., Zhang, H., Arens, E., & Zhai, Y. (2021). Gender differences in metabolic rates and thermal comfort in sedentary young males and females at various temperatures. Energy and Buildings, 251, 111360.
Zhang, Q., & Zhu, Y. (2012). Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air, 22(1), 33-42.
Zhao, Q., Lian, Z., & Lai, D. (2021). Thermal comfort models and their developments: A review. Energy and Built Environment, 2(1), 21-33.
Zhou, J., Zhang, X., Xie, J., & Liu, J. (2023). Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort. Building and Environment, 229, 109933.
內政部營建署. (2022). 建築技術規則建築設備編. Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0070117
交通部中央氣象署. (2020). 氣候月平均. Retrieved from https://www.cwa.gov.tw/V8/C/C/Statistics/monthlymean.html
行政院環保署. (2012, 2012). 室內空氣品質標準. Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0130005
官振清. (1994). 空調機出風口導板對冷房之影響. (碩士). 大同工學院,
林憲德. (2017). 人居熱環境. 台北市: 詹氏書局.
厚生労働省. (2022). 建築物環境衛生管理基準. Retrieved from https://www.mhlw.go.jp/bunya/kenkou/seikatsu-eisei10/
翁嘉陽. (2004). 貨櫃在低層住宅之應用研究. (碩士). 國立成功大學,
張舜涵. (2013). 貨櫃型臨時建物室內溫熱環境評估研究. (碩士). 國立成功大學,
勞動部. (2022). 職業安全衛生設施規則. Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=N0060009
黃勇憲. (2022). 二十呎貨櫃篩檢站之合適換氣次數研究. (碩士). 國立成功大學,
溫斯企. 寒流來了!血壓升高怎麼辦?. Retrieved from https://www.tyh.com.tw/health/f23.html#:~:text=%E7%A0%94%E7%A9%B6%E8%A1%A8%E6%98%8E%EF%BC%8C%E5%86%AC%E5%AD%A3%E4%BA%BA%E9%AB%94%E7%9A%84,%E8%A1%80%E7%AE%A1%E6%93%B4%E5%BC%B5%EF%BC%8C%E5%B0%8E%E8%87%B4%E8%A1%80%E5%A3%93%E4%B8%8B%E9%99%8D%E3%80%82
劉采艷. (2008). 血壓節律性波動與血壓自我監測之成效. 藥學雜誌, 96.