簡易檢索 / 詳目顯示

研究生: 倪鵬
Ni, Peng
論文名稱: 基於使用者需求的高速公路工作區智能安全警示系統設計研究
The Highway Work Zone Intelligent Safety Warning System Design Based on User Requirements
指導教授: 劉說芳
Liu, Shuo-Fang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 113
中文關鍵詞: 高速公路工作區智能安全警示系統使用者需求品質機能展開系統設計
外文關鍵詞: Highway Work Area, Intelligent Safety Warning System, User Requirements, Quality Function Development, System Design
相關次數: 點閱:103下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對高速公路工作區的安全問題,提出一種以使用者需求為出發點的智能安全警示系統設計方法。本研究中首先,對高速公路工作區的類型、空間劃分、空間影響進行了深入的探討,並對工作區的安全問題進行了全面的分析。我們發現,無論是施工人員還是駕駛者,都面臨著多種安全風險。為了解決這些問題,我們回顧了智能安全警示系統的發展與應用,特別是物聯網和人工智慧技術的應用。
    在研究方法方面,本研究採用了品質機能展開(Quality Function Deployment,QFD)這種從使用者需求出發的方法。這使我們能夠從使用者的角度,深入理解他們的實際需求,並將這些需求轉化為具體的系統設計要素。
    在本研究的實驗中,我們首先進行了用戶需求調查,收集了初級需求,並歸納了次級需求。然後,我們採用品質機能展開(QFD)方法,將用戶需求轉化為設計要素,並建立了用戶需求與設計要素間的關係矩陣,以及設計要素之間的關聯矩陣,從而確立了關鍵設計要素。在系統設計與驗證階段,我們設計了系統的物聯網架構,集成了系統的硬體設備,規劃了系統的軟體服務,並進行了系統的設計驗證。研究結果顯示,該智能安全警示系統獲得了使用者的較高接受度,並有著不錯的感知可用性表現。我們認為,本研究的成果將對解決高速公路工作區的安全問題,提供了新的思路。並為未來的智能安全警示系統設計開發提供實證參考。
    本研究的主要貢獻在於提出了一種基於使用者需求的智能安全警示系統設計方法,並通過實證研究證明了其有效性。我們相信,這種以使用者需求為出發點的設計方法,將有助於提高智能安全警示系統的使用效果,並提升使用者的滿意度。

    In this study, an intelligent safety warning system design method with user needs as the starting point is proposed for the safety problems in highway work zones. In this study, firstly, the type, spatial division, and spatial impact of highway work zones are thoroughly investigated, and a comprehensive analysis of work zone safety issues is conducted. We found that both construction workers and motorists are exposed to a variety of safety risks. To address these issues, we review the development and application of intelligent safety warning systems, especially the application of the Internet of Things and artificial intelligence technologies.
    In terms of research methodology, this study adopts the Quality Function Deployment (QFD) approach, which starts from the user's needs. This allows us to understand the actual needs of users from their perspective and translate these needs into specific system design elements.
    In the experiments of this study, we first conducted a user requirements survey to collect the primary requirements and summarize the secondary requirements. Then, we adopted the Quality Functional Development (QFD) method to transform the user requirements into design elements, and established the relationship matrix between user requirements and design elements, as well as the association matrix between design elements, so as to establish the key design elements. In the system design and validation stage, we designed the system's IoT architecture, integrated the system's hardware devices, planned the system's software services, and conducted the system design validation. The results of the study show that the intelligent safety warning system has gained high acceptance by users and has good perceived usability performance. We believe that the results of this study will provide new ideas for solving safety problems in highway work zones. It also provides empirical reference for the future design and development of intelligent safety warning systems.
    The main contribution of this study is to propose an intelligent safety warning system design method based on user requirements and to prove its effectiveness through empirical studies. We believe that this user needs-based design approach will help to improve the effectiveness of the intelligent safety warning system and enhance the user satisfaction.

    摘要 i SUMMARY ii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 INTRODUCTION 1 1.1 Research Background And Motivation 1 1.2 Purpose Of The Study 4 1.3 Research Scope And Limitations 5 1.4 Research Framework 7 CHAPTER 2 Literature Study 8 2.1 Highway Work Area 8 2.1.1 Type Of Work Area 8 2.1.2 Work Area Space Division 9 2.1.3 Work Area Space Impact 11 2.1.4 Summary 13 2.2 Work Area Safety Issues 14 2.2.1 Safety Risks To Construction Workers 14 2.2.2 Solutions And Problems For Builders 16 2.2.3 Safety Issues Facing Drivers 22 2.2.4 Solutions And Problems For Road Users 23 2.2.5 Summary 26 2.3 The Development And Application Of Intelligent Safety Warning System 27 2.3.1 Application of Internet Of Things Technology 27 2.3.2 Application Of Artificial Intelligence Technology 30 2.3.3 Summary 32 2.4 Literature Review Summary 33 CHAPTER 3 Research Methodology and Procedure 35 3.1 Research Methodology 35 3.1.1 Quality Function Deployment 35 3.1.2 System Availability Scale 37 3.2 Research Process 38 3.2.1 Phase 1 User Requirements Survey 39 3.2.2 Phase 2 QFD-Based System Design Requirements Analysis 41 3.2.3 Phase 3 System Design And Validation 44 CHAPTER 4 Intelligent warning system design for work area based on user needs 47 4.1 User Demand Survey 47 4.1.1 Analysis Of Respondents 47 4.1.2 Primary Needs Collection 48 4.1.3 "Secondary Needs" Summarized 50 4.2 QFD-Based System Design Requirements Analysis 54 4.2.1 User Requirements Input 54 4.2.2 Transformation Design Elements 57 4.2.3 Matrix Of The Relationship Between User Requirements And Design Elements 59 4.2.4 Matrix Of Correlations Between Design Elements 62 4.2.5 Identify Key Design Elements 63 4.3 System Design And Validation 65 4.3.1 QFD-based design element analysis collation 65 4.3.2 System Design Of IoT Architecture 67 4.3.3 System Design For Hardware Integration 73 4.3.4 System Software Service Planning 77 4.3.5 System Design Verification 88 CHAPTER 5 DISCUSSION 94 5.1 Actual User Requirements 94 5.2 Critical System Design Elements 95 5.3 Planning Design And Verification Of Intelligent Safety Warning System In Work Area 96 CHAPTER 6 CONCLUSION 99 6.1 Conclusion 99 6.2 Outlook and Recommendations 100 REFERENCES 103 Appendix A 111

    Awolusi, I., & Marks, E. D. (2019). Active work zone safety: Preventing accidents using intrusion sensing technologies. Frontiers in Built Environment, 5(March), 1–11. https://doi.org/10.3389/fbuil.2019.00021
    Bai, Y., Yang, Y., & Li, Y. (2015). Determining the effective location of a portable changeable message sign on reducing the risk of truck-related crashes in work zones. Accident Analysis & Prevention, 83, 197–202. https://doi.org/10.1016/J.AAP.2015.07.024
    Banaeiyan, N., uz Zaman, A., & Hayee, M. I. (2016). Visual Warning System for Worker Safety on Roadside Workzones. Retrieved from http://conservancy.umn.edu/handle/11299/183238
    Bangor, A., Kortum, P., & Miller, J. (2009). Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. Journal of Usability Studies, 4, 114–123.
    Bangor, A., Kortum, P. T., & Miller, J. T. (2008a). An Empirical Evaluation of the System Usability Scale. Https://Doi.Org/10.1080/10447310802205776, 24(6), 574–594. https://doi.org/10.1080/10447310802205776
    Bangor, A., Kortum, P. T., & Miller, J. T. (2008b). An Empirical Evaluation of the System Usability Scale. Https://Doi.Org/10.1080/10447310802205776, 24(6), 574–594. https://doi.org/10.1080/10447310802205776
    Bathula, M., Ramezanali, M., Pradhan, I., Patel, N., Gotschall, J., & Sridhar, N. (2009). A sensor network system for measuring traffic in short-term construction work zones. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5516 LNCS, 216–230. https://doi.org/10.1007/978-3-642-02085-8_16
    Brad Sant. (2014, June 16). WORK-ZONE SAFETY: Intrusion alert | Roads and Bridges. Retrieved 3 October 2022, from https://www.roadsbridges.com/safety/work-zone/article/10646453/work-zone-safety-intrusion-alert
    Brooke, J. (1996). SUS-A quick and dirty usability scale. Retrieved from www.TBIStaffTraining.info
    CDC. (2022). Highway Work Zone Safety | NIOSH | CDC. Retrieved 17 October 2022, from https://www.cdc.gov/niosh/topics/highwayworkzones/
    Chandler, B., Kehoe, N., O’donnell, C., Luttrell, T., & Perry, E. (2013). Work Zone Safety Data Collection and Analysis Guide Work Zone Safety Data Collection and Analysis Guide 6. Performing Organization Code 7. Authors WORK ZONE SAFETY DATA COLLECTION AND ANALYSIS GUIDE.
    Chatterjee, K., & McDonald, M. (2007). Effectiveness of using variable message signs to disseminate dynamic traffic information: Evidence from field trails in European cities. Https://Doi.Org/10.1080/0144164042000196080, 24(5), 559–585. https://doi.org/10.1080/0144164042000196080
    Daniel Giusto, A. I. (2010). The Internet of Things (D. Giusto, A. Iera, G. Morabito, & L. Atzori, Eds.). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4419-1674-7
    Debnath, A. K., Blackman, R., & Haworth, N. (2015). Common hazards and their mitigating measures in work zones: A qualitative study of worker perceptions. Safety Science, 72, 293–301. https://doi.org/10.1016/J.SSCI.2014.09.022
    Dehman, A., & Farooq, B. (2021). Are work zones and connected automated vehicles ready for a harmonious coexistence? A scoping review and research agenda. Transportation Research Part C: Emerging Technologies, 133(November), 103422. https://doi.org/10.1016/j.trc.2021.103422
    Eckenrode, R. T., Sarasua, W. A., Mattox, J. H., Ogle, J. H., & Chowdhury, M. (2007). Revisiting the Use of Drone Radar to Reduce Speed in Work Zones. Https://Doi.Org/10.3141/2015-03, (2015), 19–27. https://doi.org/10.3141/2015-03
    FHWA. (2012). 2012 Urban Congestion Trends. Retrieved from www.roads.maryland.gov/OOTS/2012_Maryland_State_HIghway_Mobility_Report.pdf
    FHWA. (2013). 0 Tips for Driving in Work Zones. Retrieved from www.fhwa.dot.gov/workzones
    FHWA. (2021a). FHWA Work Zone Facts and Statistics - FHWA Office of Operations. Retrieved 3 October 2022, from https://ops.fhwa.dot.gov/wz/resources/facts_stats.htm
    FHWA. (2021b). Table HM-10M - Highway Statistics 2020 - Policy | Federal Highway Administration. Retrieved 16 October 2022, from https://www.fhwa.dot.gov/policyinformation/statistics/2020/hm10m.cfm
    Foo, S., Abdulhai, B., & Hall, F. L. (2008). Impacts on Traffic Diversion Rates of Changed Message on Changeable Message Sign. Https://Doi.Org/10.3141/2047-02, (2047), 11–18. https://doi.org/10.3141/2047-02
    Fyhrie. (2016). Work Zone Intrusion Alarms for Highway Workers. Retrieved from https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/preliminary-investigations/work-zone-warning-pi-a11y.pdf
    Garber, N. J., & Zhao, M. (2002). Distribution and characteristics of crashes at different work zone locations in Virginia. Transportation Research Record, (1794), 19–28. https://doi.org/10.3141/1794-03
    Glendon, A. I., & Litherland, D. K. (2001). Safety climate factors, group differences and safety behaviour in road construction. Safety Science, 39(3), 157–188. https://doi.org/10.1016/S0925-7535(01)00006-6
    Ha, T.-J., Nemeth, Z. A., & Ha, T. J. (1995). Detailed Study of Accident Experience in Construction and Maintenance Zones. Retrieved from https://onlinepubs.trb.org/Onlinepubs/trr/1995/1509/1509-006.pdf
    Ha TJ, & Nemeth ZA. (1995). Detailed study of accident experience in construction and maintenance zones. Transportation Research Record, 1509, 38–45. Retrieved from http://www.safetylit.org/citations/index.php?fuseaction=citations.viewdetails&citationIds[]=citjournalarticle_688355_38
    ITU. (2005). The Internet of The Internet of Things Things. Retrieved from www.itu.int/publications/bookshop/.
    ITU. (2012). Y.2060 : Overview of the Internet of things. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I
    Jafarnejad, A., Gambatese, J., & Hernandez, S. (2017). Influence of Truck-Mounted Radar Speed Signs in Controlling Vehicle Speed for Mobile Maintenance Operations: Oregon Case Study. Https://Doi.Org/10.3141/2617-03, 2617, 19–26. https://doi.org/10.3141/2617-03
    John McCarthy. (2007). WHAT IS ARTIFICIAL INTELLIGENCE? Retrieved 26 December 2022, from https://web.archive.org/web/20151118212402/http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
    Kastrinaki, V., Zervakis, M., & Kalaitzakis, K. (2003). A survey of video processing techniques for traffic applications. Image and Vision Computing, 21(4), 359–381. https://doi.org/10.1016/S0262-8856(03)00004-0
    Katariya, V., Baharani, M., Morris, N., Shoghli, O., & Tabkhi, H. (2022). DeepTrack: Lightweight Deep Learning for Vehicle Trajectory Prediction in Highways. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3172015
    Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture, possible applications and key challenges. Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, 257–260. https://doi.org/10.1109/FIT.2012.53
    Kim, Y. A., Ryoo, B. Y., Kim, Y.-S., & Huh, W. C. (2013). Major Accident Factors for Effective Safety Management of Highway Construction Projects. Journal of Construction Engineering and Management, 139(6), 628–640. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000640
    Learn, S., Ma, J., Raboy, K., Zhou, F., & Guo, Y. (2018). Freeway speedharmonisation experiment using connected and automated vehicles. IET Intelligent Transport Systems, 12(5), 319–326. https://doi.org/10.1049/IET-ITS.2017.0149
    Li, X., Cui, J., An, S., & Parsafard, M. (2014). Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation. Transportation Research Part B: Methodological, 70(1), 319–339. https://doi.org/10.1016/J.TRB.2014.09.014
    Li, Y., & Bai, Y. (2008a). Comparison of characteristics between fatal and injury accidents in the highway construction zones. Safety Science, 46(4), 646–660. https://doi.org/10.1016/J.SSCI.2007.06.019
    Li, Y., & Bai, Y. (2008b). Development of crash-severity-index models for the measurement of work zone risk levels. Accident Analysis & Prevention, 40(5), 1724–1731. https://doi.org/10.1016/J.AAP.2008.06.012
    Liu, H., & Zhou, X. (1996). A systematic planning approach to implementing total quality management through quality function deployment technique. Computers & Industrial Engineering, 31(3–4), 747–751. https://doi.org/10.1016/S0360-8352(96)00236-7
    Marks, E., & Teizer, J. (2012). Proximity Sensing and Warning Technology for Heavy Construction Equipment Operation. Construction Research Congress 2012: Construction Challenges in a Flat World, Proceedings of the 2012 Construction Research Congress, 981–990. https://doi.org/10.1061/9780784412329.099
    Metrolinx. (2008). Costs of road congestion in the Greater Toronto and Hamilton Area: impact and cost benefit analysis of the Metrolinx Draft Regional Transportation Plan. Greater Toronto Transportation Authority, 122.
    Mizuno, S., Akao, Y., & Ishihara, K. (1994). The Customer Driven Approach to Quality Planning and Deployment. Minato, Tokyo: Asian Productivity Organization.
    Nath, N. D., Behzadan, A. H., & Paal, S. G. (2020). Deep learning for site safety: Real-time detection of personal protective equipment. Automation in Construction, 112, 103085. https://doi.org/10.1016/J.AUTCON.2020.103085
    Nnaji, C., Gambatese, J., Lee, H. W., & Zhang, F. (2020). Improving construction work zone safety using technology: A systematic review of applicable technologies. Journal of Traffic and Transportation Engineering (English Edition), 7(1), 61–75. https://doi.org/10.1016/j.jtte.2019.11.001
    Noyce, D. A., & Smith, C. R. (2003). Driving Simulators for Evaluation of Novel Traffic-Control Devices: Protected–Permissive Left-Turn Signal Display Analysis. Https://Doi.Org/10.3141/1844-04, (1844), 25–34. https://doi.org/10.3141/1844-04
    Pigman, J. G., & Agent, K. R. (1990). Highway Accidents in Construction and Maintenance Work Zones. Transportation Research Record: Journal of the Transportation Research Board, 1270, 12–21. Retrieved from http://onlinepubs.trb.org/Onlinepubs/trr/1990/1270/1270-002.pdf
    Prasad, B. (1998). Review of QFD and related deployment techniques. Journal of Manufacturing Systems, 17(3), 221–234. https://doi.org/10.1016/S0278-6125(98)80063-0
    Ramírez-Arias, J. L., Rubiano-Fonseca, A., & Jiménez-Moreno, R. (2020). Object Recognition Through Artificial Intelligence Techniques. Revista Facultad de Ingeniería, 29(54), e10734–e10734. https://doi.org/10.19053/01211129.V29.N54.2020.10734
    Reinolsmann, N., Alhajyaseen, W., Brijs, T., Pirdavani, A., Ross, V., Hussain, Q., & Brijs, K. (2022). Delay or travel time information? The impact of advanced traveler information systems on drivers’ behavior before freeway work zones. Transportation Research Part F: Traffic Psychology and Behaviour, 87, 454–476. https://doi.org/10.1016/J.TRF.2022.05.001
    Sabeti, S., Shoghli, O., Baharani, M., & Tabkhi, H. (2021). Toward AI-enabled augmented reality to enhance the safety of highway work zones: Feasibility, requirements, and challenges. Advanced Engineering Informatics, 50(September), 101429. https://doi.org/10.1016/j.aei.2021.101429
    Sakhakarmi, S., & Park, J. W. (2022). Improved intrusion accident management using haptic signals in roadway work zone. Journal of Safety Research, 80, 320–329. https://doi.org/10.1016/J.JSR.2021.12.015
    Sauro, J., & Lewis, J. R. (2009). Correlations among prototypical usability metrics: Evidence for the construct of usability. Conference on Human Factors in Computing Systems - Proceedings, 1609–1618. https://doi.org/10.1145/1518701.1518947
    Sayed, H. A., Said, A. M., & Ibrahim, A. W. (2023). Smart Utilities IoT-Based Data Collection Scheduling. Arabian Journal for Science and Engineering, 1–15. https://doi.org/10.1007/S13369-023-07835-4/FIGURES/17
    Shen, J., Yan, W., Li, P., & Xiong, X. (2021). Deep learning-based object identification with instance segmentation and pseudo-LiDAR point cloud for work zone safety. Computer-Aided Civil and Infrastructure Engineering, 36(12), 1549–1567. https://doi.org/10.1111/MICE.12749
    Soole, D. W., Watson, B. C., & Fleiter, J. J. (2013). Effects of average speed enforcement on speed compliance and crashes: A review of the literature. Accident Analysis & Prevention, 54, 46–56. https://doi.org/10.1016/J.AAP.2013.01.018
    Talcott, C. (2008). Cyber-physical systems and events. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5380 LNCS, 101–115. https://doi.org/10.1007/978-3-540-89437-7_6
    TOMTOM Traffic Index. (2021). Traffic congestion ranking | TomTom Traffic Index. Retrieved 4 October 2022, from https://www.tomtom.com/traffic-index/ranking/?country=HK,IN,ID,IL,JP,KW,MY,PH,QA,SA,SG,TW,TH,AE
    Whitmore, A., Agarwal, A., & da Xu, L. (2015). The Internet of Things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274. https://doi.org/10.1007/S10796-014-9489-2/FIGURES/3
    Work Zone Safety Information Clearinghouse. (2021). Work Zone Data — Work Zone Safety Information Clearinghouse. Retrieved 3 October 2022, from https://workzonesafety.org/work-zone-data/
    Wu, W., Zhan, Y., Yang, L., Sun, R., & Ni, A. (2022). Optimization of lane-changing advisory of connected and autonomous vehicles at a multi-lane work zone. International Journal of Modern Physics C, 33(2). https://doi.org/10.1142/S0129183122500206
    WZSIC. (2020). 道路施工现场的工人伤亡 - 工作区安全信息交换所. Retrieved 8 October 2022, from https://workzonesafety.org/work-zone-data/worker-fatalities-and-injuries-at-road-construction-sites/#reference-1
    WZSIC. (2023). Work Zone Traffic Crash Trends and Statistics — Work Zone Safety Information Clearinghouse. Retrieved 31 May 2023, from WZSIC website: https://workzonesafety.org/work-zone-data/work-zone-traffic-crash-trends-and-statistics/
    Xie, T., & Liu, Y. (2022). Impact of connected and autonomous vehicle technology on market penetration and route choices. Transportation Research Part C: Emerging Technologies, 139, 103646. https://doi.org/10.1016/J.TRC.2022.103646
    Yang, H., Ozbay, K., Ozturk, O., & Xie, K. (2015). Work Zone Safety Analysis and Modeling: A State-of-the-Art Review. Traffic Injury Prevention, 16(4), 387–396. https://doi.org/10.1080/15389588.2014.948615
    Yang, Z., Yue, Y., Yang, Y., Peng, Y., Wang, X., & Liu, W. (2011). Study and application on the architecture and key technologies for IOT. 2011 International Conference on Multimedia Technology, ICMT 2011, 747–751. https://doi.org/10.1109/ICMT.2011.6002149
    中國交通運輸部. (2022, April 26). 中國交通運輸部. Retrieved 5 June 2023, from 新華社 website: https://www.gov.cn/xinwen/2022-04/26/content_5687326.htm
    交通部臺灣區國道高速公路局. (2022). 交通部臺灣區國道高速公路局全球資訊網-道路養護. 交通部臺灣區國道高速公路局.
    交通部高速公路局. (2021). 交通部高速公路局全球資訊網-109年度國道事故檢討分析報告提要. 交通部高速公路局.
    交通部高速公路局. (2022a). 交通部高速公路局全球資訊網-留意施工資訊及車輛,確保國道行車安全. 交通部高速公路局.
    交通部高速公路局. 施工之交通管制守則. , (2022).
    高德地圖. (2021). 2021年度中国主要城市交通分析报告. Retrieved 4 October 2022, from https://report.amap.com/share.do?id=a187bf657e487a5f017e7142cc5c4d52
    高速公路局. (2022). 施工之交通管制守則 交通部高速公路局 中華民國 111 年 2 月修訂. Retrieved from https://www.freeway.gov.tw/Publish.aspx?cnid=1502&p=1160

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE