簡易檢索 / 詳目顯示

研究生: 柯中喬
Ke, Jhong-Ciao
論文名稱: 有機與CH3NH3PbI3鈣鈦礦太陽能電池特性之研究
Research on the Properties of Organic and CH3NH3PbI3 Perovskite Solar Cells
指導教授: 黃建榮
Huang, Chien-Jung
王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 133
中文關鍵詞: 有機太陽能電池鈣鈦礦太陽能電池氧化銦錫光電轉換效率光電元件
外文關鍵詞: Organic solar cells, Perovskite solar cells, Indium tin oxide, Power conversion efficiency, Optoelectronic device
相關次數: 點閱:136下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,對有機太陽能電池(Organic solar cells, OSCs)和CH3NH3PbI3鈣鈦礦太陽能電池(Perovskite solar cells, PSCs)的機制進行了詳細研究。OSCs在第三章討論,而PSCs在第四章討論。本論文第三章第一節為探討OSCs結構中電子傳輸層的傳導機制。由沉積製作金屬陰極進而誘發陰極緩衝層的能態進行研究。利用吸收光譜之變化來證明缺陷能態的存在,並以此解釋了電子傳輸層厚度如何影響OSCs之功率轉換效率(Power conversion efficiency, PCE)。第三章第二節主要探討硼亞酞菁氯化物(Boron subphthalocyanine chloride, SubPc)主動層厚度變化對於OSCs之影響,並且討論電洞傳輸層對PCE之影響。第三章第三節主要探討OSCs開路電壓(Open circuit voltage, Voc)之機制。藉由插入氧化鉬(Molybdenum trioxide, MoO3)電洞傳輸層於不同主動層之OSCs之PCE變化進行分析研究。利用吸收光譜和X射線光電子能譜檢測MoO3和酞菁銅(Copper phthalocyanine, CuPc)之間的相互作用。發現到MoO3和CuPc之間的電子轉移,引起界面態的形成在MoO3/CuPc界面,導致費米能階在界面處的釘扎。因此,以CuPc為主動層之元件Voc無法藉由插入MoO3陽極緩衝層而有所改善。
    第三章第四節為OSCs使用不同的電極對效率之影響進行了研究。陽極使用不同片電阻的氧化銦錫(Indium tion oxide, ITO, 7–70 Ω/sq)。陰極使用的材料分別為鋁(Al)和銀(Ag)。將Al換成Ag作為陰極,以CuPc和C60為主動層的元件PCE從0.71%提高到0.86%。而以SubPc和C60為主動層的元件PCE從2.61%提高到2.96%。PCE增強主要是歸因於Al和Ag之間的光學特性的差異導致電流密度的改善。第三章第五節為使用不同功率氧電漿(O2 plasma)處理ITO基板對OSCs之PCE進行了研究,O2 plasma的功率變化從20瓦變化至80瓦。結果顯示出以O2 plasma處理ITO基板上的功率應被控制低於40瓦,避免影響ITO薄膜的電特性造成元件PCE下降。
    本論文第四章第一節為使用各種不同溶劑製造CH3NH3PbI3 PSCs對效率之影響進行研究。該元件結構是由ITO/聚二氧乙基噻吩 聚苯乙烯磺酸(PEDOT:PSS)/CH3NH3PbI3(使用各種溶劑製造)/C60/浴銅靈(Bathocuproine, BCP)/Ag。使用的溶劑有二甲基甲醯胺(Dimethylformamide, DMF),γ丁內酯(γ-butyrolactone, GBL),二甲基亞碸(Dimethyl sulfoxide, DMSO),DMSO和DMF混合(1:1體積/體積),和DMSO和GBL混合(1:1體積/體積)。結果顯示出使用DMSO中的混合溶劑可得到9.77%的轉換效率。最佳的混合溶劑為DMSO:DMF:GBL(5:2:3體積/體積/體積),可使得鈣鈦礦太陽能電池轉換效率進一步提高到10.84%。本論文第四章第二節為使用不同溫度退火處理和各種材料作為受體的CH3NH3PbI3 PSCs進行了研究。該元件結構是由ITO/PEDOT:PSS/CH3NH3PbI3(不同溫度退火處理)/受體材料/BCP/Ag結構。CH3NH3PbI3層的熱退火處理為從60℃至120℃進行。結果顯示出退火處理的溫度對元件的PCE有顯著影響。此外,在該元件中使用的受體材料分別為C60,C70和3,4,9,10-苝雙苯並咪唑。結果顯示出PSCs的發電機制與OSCs是相近的,都是利用供體/受體界面去解離束縛在一起的電子電洞對而產生光伏效應,最後元件效率可達到11.58%。

    In this dissertation, the influence of different factors on the performance of organic solar cells (OSCs) and CH3NH3PbI3 perovskite solar cells (PSCs) is investigated in detail. The OSCs are studied and discussed in Chapter 3, and the PSCs are investigated and discussed in Chapter 4. Section 1 in Chapter 3 is focused on the energy states in a cathode buffer layer induced by metal cathode deposition. The absorption spectra show the existence of energy states in the cathode buffer layer, and the energy level of states can be estimated in a quantitative manner. Section 2 in Chapter 3 presents the research on small-molecule OSCs based on boron subphthalocyanine chloride (SubPc) and C60. This research is conducted by varying the SubPc layer thickness from 3 nm to 21 nm. Section 3 in Chapter 3 presents the effect of inserting a molybdenum oxide (MoO3) anode buffer layer into OSCs based on various electron donor materials. Results show a great enhancement of the open-circuit voltage in the device. This enhancement originates from the work function improvement of indium tin oxide (ITO) by covering the MoO3 layer. However, the function of MoO3 is not evident in the device that uses copper phthalocyanine (CuPc) as the donor material. The interaction between MoO3 and CuPc is detected using UV–visible absorption and X-ray photoelectron spectroscopy. The electron transfer between MoO3 and CuPc causes the formation of an interface state at the MoO3/CuPc interface, resulting in Fermi-level pinning at the interface. Consequently, inserting a MoO3 anode buffer layer cannot improve the efficiency of the CuPc/C60 heterojunction device.
    In Section 4 of Chapter 3, the effect of different electrodes on OSC performance is studied. Various sheet resistances of ITO are used as anodes to determine which resistance is suitable for OSC application. In cathodes, the commonly used for OSCs are Al and Ag. The efficiency of the device based on CuPc and C60 increased from 0.71% to 0.86% when Ag was substituted for Al as a cathode, whereas the efficiency of the device based on SubPc and C60 increased from 2.61% to 2.96%. The performance enhancement was mainly ascribed to the current density improvement, which resulted from the difference in optical characteristics between Al and Ag. In Section 5 of Chapter 3, the effect of OSCs is investigated using different power O2 plasma treatments on ITO substrate. The power of O2 plasma treatment on the ITO substrate varied from 20 W to 80 W. Therefore, the power of O2 plasma treatment on the ITO substrate for OSC application should be controlled below 40 W to avoid affecting the electricity of the ITO film.
    In Section 1 of Chapter 4, the effect of PSCs fabricated using various solvents is studied. The device was composed of an ITO/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) / CH3NH3PbI3 (fabricated using various solvents) / C60/bathocuproine (BCP) / Ag structure. The solvents are dimethylformamide (DMF), γ-butyrolactone (GBL), dimethyl sulfoxide (DMSO), a mixture of DMSO and DMF (DMSO:DMF; 1:1 v/v), and a mixture of DMSO and GBL (DMSO:GBL; 1:1 v/v). As a result, a power conversion efficiency (PCE) of 9.77% was obtained using the mixed solvent of DMSO:GBL because of smooth surface roughness, uniform film coverage on the substrate, and high crystallization of perovskite structure. Finally, the mixed solvent of DMSO:DMF:GBL (5:2:3 v/v/v), which combined the advantage of each solvent at an appropriate ratio, was used to fabricate the device, thereby leading to the further improvement of the PCE of PSCs to 10.84%. In Section 2 of Chapter 4, the effects of PSCs using different temperature annealing treatments and various materials as acceptors are studied. The device was composed of an ITO/PEDOT:PSS/CH3NH3PbI3 (different temperature annealing treatments) / acceptor materials/ BCP / Ag structure. The thermal annealing treatments of CH3NH3PbI3 layers were conducted from 60 °C to 120 °C. Results show that the temperature of the annealing treatment has significant influences on the PCE of the device. The acceptor materials used in the device were C60, C70, and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole. This finding shows that the mechanism of PSCs is similar to the concept of OSCs, in which the donor/acceptor interface dissociates the electron–hole pair via the energy level difference to produce the photovoltaic effect. Therefore, an efficiency of 11.58% was obtained in CH3NH3PbI3 PSC.

    Contents Chinese Abstract I English Abstract III Acknowledgement VI Contents VII Figure Captions XI Table Captions XVI Chapter 1 Introduction 1.1 Organic Solar Cells 1 1.2 Perovskite Solar Cells 3 1.3 Motivation 4 1.4 Organization 5 Chapter 2 Experimental Details 2.1 Indium Tin Oxide Patterning Process 6 2.2 Device Fabrication Process 7 2.3 Device Measurement and Parameter Analysis 7 2.3.1 Dark Current and Photocurrent 7 2.3.2 Open-Circuit Voltage, Fill Factor, and Power Conversion Efficiency 8 2.3.3 Shunt Resistance and Series Resistance 8 2.3.4 Quantum Efficiency 9 Chapter 3 Organic Solar Cells 3.1 Effect of Energy State in the Buffer Layer on the Output Performance of Organic Solar Cells 10 3.1.1 Introduction 10 3.1.2 Experimental Section 11 3.1.3 Results and Discussion 11 3.1.3.1 Existence of Defect States Proved by Optical Absorption 11 3.1.3.2 Diffusion Depth Profile of the Ag Deposited on BCP Layer 13 3.1.3.3 Influence of BCP Layer Thickness on the Performance of Organic Solar Cells 14 3.2 Small-Molecule Organic Solar Cell Performance Based on Boron Subphthalocyanine Chloride and C60 16 3.2.1 Introduction 16 3.2.2 Experimental Section 17 3.2.3 Results and Discussion 17 3.2.3.1 Influence of SubPc Layer Thickness on the Performance of Organic Solar Cells 17 3.2.3.2 Influence of SubPc Layer Thickness on the Voc 18 3.2.3.3 PEDOT:PSS and MoO3 Anode Buffer Layers Applied in the Device 19 3.3 Effect of Open-circuit Voltage in Organic Solar Cells Based on Electron Donor Materials by Inserting Molybdenum Trioxide Anode Buffer Layer 21 3.3.1 Introduction 21 3.3.2 Experimental Section 22 3.3.3 Results and Discussion 24 3.3.3.1 Function of MoO3 Anode Buffer Layer 24 3.3.3.2 Influence of MoO3 Anode Buffer Layer on the Performance of Organic Solar Cells 25 3.3.3.3 Relation of Voc and Active layer Thickness 26 3.3.3.4 Influence of Fermi-level Pinning on the Voc 27 3.4 Effect of Organic Solar Cells using Sheet Resistances of Indium Tin Oxide and Cathodes: Aluminum and Silver 30 3.4.1 Introduction 30 3.4.2 Experimental Section 31 3.4.3 Results and Discussion 32 3.4.3.1 Sheet Resistances of 7–70 Ω/sq ITO Applied in Devices Based on Small-Molecule Material 32 3.4.3.2 Sheet Resistances of 7 and 15 Ω/sq ITO Applied in Devices Based on Polymer Material 34 3.4.3.3 Effect of Al and Ag as a Cathode Applied in Devices 34 3.5 Effect of Organic Solar Cells using O2 plasma treatments 37 3.5.1 Introduction 37 3.5.2 Experimental Section 38 3.5.3 Results and Discussion 39 3.5.3.1 Power of 20–80 W O2 Plasma Treatments Applied to the ITO Substrates 39 3.5.3.2 Function of O2 Plasma Treatment 40 3.5.3.3 XPS Analysis of the ITO Substrates after O2 Plasma Treatments 41 Chapter 4 CH3NH3PbI3 Perovskite Solar Cells 4.1 Effect of Solvents on the CH3NH3PbI3 Perovskite Solar Cell Performance 43 4.1.1 Introduction 43 4.1.2 Experimental Section 44 4.1.3 Results and Discussion 46 4.1.3.1 Performance of Devices Fabricated from Solvents 46 4.1.3.2 Property of CH3NH3PbI3 Layers Fabricated from Solvents 46 4.1.3.3 XRD Analysis of CH3NH3PbI3 Layers 48 4.2 Effect of Temperature Annealing Treatments and Acceptors in CH3NH3PbI3 Perovskite Solar Cell Fabrication 50 4.2.1 Introduction 50 4.2.2 Experimental Section 51 4.2.3 Results and Discussion 53 4.2.3.1 Influence of Annealing Treatments on the Performance of Perovskite Solar Cells 53 4.2.3.2 XRD Analysis of CH3NH3PbI3 Layers 54 4.2.3.3 Influence of Acceptors on the Performance of Perovskite Solar Cells 55 Chapter 5 Conclusions and Future Works 5.1 Conclusions 57 5.2 Future works 60 References 62 List of Publication 131 Figures Captions Figure 1-1 Single-layer organic solar cell structure. 68 Figure 1-2 Bilayer organic solar cell structure. 69 Figure 1-3 Bulk heterojunction organic solar cell structure. 70 Figure 1-4 Combined bilayer and bulk organic solar cell structure. 71 Figure 1-5 Basic structure of an organic solar cell. 72 Figure 2-1 Pattern of the ITO glass substrate. 73 Figure 2-2 Cleaning process of the ITO substrate. 74 Figure 2-3 Spin coating process of photoresist. 75 Figure 2-4 Process of exposure and development. 76 Figure 2-5 Etching process of ITO. 77 Figure 2-6 Brief fabrication process of the solar cell. 78 Figure 2-7 Measurement of the solar cell under illumination. 79 Figure 2-8 I-V characteristics of the solar cell. 80 Figure 2-9 Equivalent circuit of solar cell with Rs and Rsh. 81 Figure 3-1 (a) Absorption spectra of glass substrate / BCP (10 nm) and glass substrate/ BCP (10 nm) / Ag (2 nm). (b) Schematic energy level diagram of organic solar cell. 82 Figure 3-2 (a) Absorption spectra of glass substrate / Bphen (10 nm) and glass substrate / Bphen (10 nm) / Ag (2 nm). (b) Schematic energy level diagram of organic solar cell 83 Figure 3-3 SIMS depth profile of glass substrate / BCP (20 nm) / Ag (10 nm). 84 Figure 3-4 J–V characteristics of OSCs with different BCP thicknesses. 85 Figure 3-5 (a) Configuration of device and (b) energy level diagram. 86 Figure 3-6 J–V characteristics of devices (ITO / SubPc / C60 [30 nm] / BCP [10 nm] / Ag) with different SubPc layer thicknesses (3–21 nm). 87 Figure 3-7 Height profiles of (a) bare ITO, (b) ITO/SubPc (3 nm), (c) ITO/SubPc (6 nm), and (d) ITO/SubPc (9 nm). 88 Figure 3-8 (a) Schematic energy-level diagram of acceptor materials and (b) structure diagram of the device. 89 Figure 3-9 (a) UPS spectra of ITO and ITO/MoO3. (b) Three-dimensional AFM images of ITO (left) and ITO/MoO3 (right). 90 Figure 3-10 J–V characteristics of the devices based on SubPc, rubrene, DTDCPB and CuPc as a donor (a) without MoO3 buffer layer and (b) with MoO3 buffer layer. 91 Figure 3-11 External quantum efficiency spectra of the devices based on (a) SubPc/C60, (b) rubrene/C60, (c) DTDCPB/C60, and (d) CuPc/C60 heterojunction with and without MoO3 buffer layer. 92 Figure 3-12 Absorption spectra of (a) MoO3, SubPc, and MoO3:SubPc films on glass substrate, (b) MoO3, CuPc, and MoO3:CuPc films on glass substrate. (c) Absorption peaks of CuPc (solid line) and Gaussian fitting peaks of CuPc:MoO3 thin films (dashed line). 93 Figure 3-13 XPS N 1s spectra of (a) CuPc and CuPc:MoO3 thin films, (b) SubPc, and SubPc:MoO3 thin films. 94 Figure 3-14 Schematic diagrams of the device architecture. 95 Figure 3-15 Transmittance spectra of various sheet resistances of ITO. 96 Figure 3-16 J–V characteristics of the device based on SubPc/C60 using various sheet resistances of ITO. 97 Figure 3-17 (a) EQE spectra of the devices based on SubPc/C60 using various sheet resistances of ITO. (b) Absorption spectra of SubPc and C60. 98 Figure 3-18 (a) J–V characteristics of the device based on PCDTBT:PCBM using ITO with 7 and 15 Ω/sq. (b) EQE spectra of the device based on PCDTBT:PCBM using ITO with 7 and 15 Ω/sq. 99 Figure 3-19 (a) J–V characteristics and (b) EQE spectra of the device based on SubPc/C60 using different cathodes, namely, Al and Ag. (c) J–V characteristics and (d) EQE spectra of the device based on CuPc/C60 using different cathodes, namely, Al and Ag. 100 Figure 3-20 Reflectance spectra of Ag and Al. 101 Figure 3-21 J–V characteristics of the devices fabricated without and with different power O2 plasma treatments on ITO substrate. 102 Figure 3-22 Transmittance spectra of the ITO substrates without and with different power O2 plasma treatments. 103 Figure 3-23 Three-dimensional AFM images of the ITO substrates without and with different power O2 plasma treatments. 104 Figure 3-24 UPS spectra of the ITO before and after O2 plasma treatment. 105 Figure 3-25 XPS O 1s spectra of the ITO substrates without and with different power O2 plasma treatments. 106 Figure 4-1 Schematic diagram of the device architecture. 107 Figure 4-2 J–V characteristics of the PSCs fabricated using GBL, DMSO, DMSO:DMF and DMSO:GBL as a solvent. 108 Figure 4-3 (a) Absorption spectra of perovskite layers and (b) EQE spectra of the devices fabricated using various solvents. 109 Figure 4-4 Microscopic image (left) and AFM morphology (right) of perovskite layers fabricated from (a) DMF, (b) GBL, (c) DMSO, (d) DMSO:DMF, and (e) DMSO: GBL. 110 Figure 4-5 X-ray diffraction patterns of perovskite layers fabricated from various solvents. 111 Figure 4-6 (a) Schematic energy-level diagram and (b) structure of the device. 112 Figure 4-7 (a) J–V characteristics of PSCs and (b) absorption spectra of CH3NH3PbI3 layer fabricated using 60 °C, 90 °C ,and 120 °C annealing treatment. 113 Figure 4-8 Surface morphology of perovskite layers fabricated using (a) 60 °C, (b) 90 °C, and (c) 120 °C annealing treatment. 114 Figure 4-9 XRD patterns of CH3NH3PbI3 layers fabricated using different temperature annealing treatments. 115 Figure 4-10 (a) J–V characteristics and (b) EQE spectra of the devices based on PTCBI, C60, and C70 as an acceptor. 116 Figure 4-11 PL spectra of CH3NH3PbI3/C60 and CH3NH3PbI3/C70. 117 Table Captions Table 3-1 Photovoltaic performance parameters of ITO/PEDOT:PSS/CuPc/C60/BCP/Ag with different BCP thicknesses. 118 Table 3-2 Table 3-2 Photovoltaic performance parameters of the devices (ITO / SubPc / C60 [30 nm] / BCP [10 nm] / Ag) with different SubPc layer thicknesses (3–21 nm). 119 Table 3-3 Photovoltaic performance parameters of the device (ITO / PEDOT:PSS or MoO3 / SubPc [9 nm] /C60 [30 nm] / BCP [10 nm] / Ag) with different buffer layers. 120 Table 3-4 Photovoltaic performance parameters of OSCs with and without MoO3 buffer layer based on SuPc, rubrene, DTDCPB, and CuPc as a donor. 121 Table 3-5 Photovoltaic performance parameters of OSCs with different thicknesses of donor based on rubrene/C60 and DTDCPB/C60. 122 Table 3-6 Photovoltaic performance parameters of SubPc/C60 based OSCs using various sheet resistances of ITO. 123 Table 3-7 Photovoltaic performance parameters of PCDTBT: PCBM based OSCs using ITO with 7 and 15 Ω/sq. 124 Table 3-8 Photovoltaic performance parameters of OSCs using Al or Ag as cathode based on SubPc/C60 and CuPc/C60. 125 Table 3-9 Photovoltaic performance parameters of the OSCs fabricated without and with different power O2 plasma treatments on ITO substrate. 126 Table 3-10 Sheet resistance of ITO without and with different power O2 plasma treatments. 127 Table 4-1 Photovoltaic performance parameters of the PSCs fabricated using various solvents. 128 Table 4-2 Photovoltaic performance parameters of the PSCs fabricated using different temperature annealing treatments on CH3NH3PbI3 layers. 129 Table 4-3 Photovoltaic performance parameters of the PSCs based on PTCBI, C60 and C70 as an acceptor. 130

    References
    [1] D. Kearns and M. Calvin, J. Chem. Phys. 29, 950 (1958).
    [2] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
    [3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 27, 1474 (1992).
    [4] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995).
    [5] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
    [6] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale 3, 4088 (2011).
    [7] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
    [8] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 338, 643 (2012).
    [9] J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature 499, 316 (2013).
    [10] M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
    [11] D. Liu and T. L. Kelly, Nat. Photon. 8, 133 (2014).
    [12] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014).
    [13] N. N. Wang, J. S. Yu, Y. Zang, J. Huang, and Y. D. Jiang, Sol. Energy Mater. Sol. Cells 94, 263 (2010).
    [14] J. Huang, J. S. Yu, H. Lin, and Y. D. Jiang, J. Appl. Phys. 105, 073105 (2009).
    [15] P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
    [16] H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans, P. Heremans, and J. Genoe, Adv. Funct. Mater. 18, 3686 (2008).
    [17] Q. L. Song, C. M. Li, M. L. Wang, X. Y. Sun, X. Y. Hou, Appl. Phys. Lett. 90, 071109 (2007).
    [18] Z. R. Hong, Z. H. Huang, X. T. Zeng, Thin Solid Films 515, 3019 (2007).
    [19] J.Y. Kim, Nelson E. Coates, D. Moses, T. Nguyen, M. Dante, K. Lee, A.J. Heeger, Science 317, 222 (2007).
    [20] F. C. Krebs, S. A. Gevorgyan, B. Gholamkhass et al., Sol. Energy Mater. Sol. Cells 93, 1968 (2009).
    [21] F. C. Krebs, H. Spanggard, T. Kjær, M. Biancardo, J. Alstrup, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 138, 106 (2007).
    [22] R. F. B. Salzman, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 91, 013508 (2007).
    [23] J. Dai, X. Jiang, H. Wang and D. Yan, Appl. Phys. Lett. 91, 253503 (2007).
    [24] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 17, 66 (2005).
    [25] L. Chen, Y. Tang, X. Fan, C. Zhang, Z. Chu, D. Wang, D. Zou, Org. Electron. 10, 724 (2009).
    [26] S.M. Schultes, P. Sullivan, S. Heutz, B.M. Sanderson, T.S. Jones, Mater. Sci. Eng. C-Mater. Biol. Appl. 25, 858 (2005).
    [27] R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger and S. R. Forrest, J. Appl. Phys. 105, 053711 (2009).
    [28] J. Kim and S. Yim, Appl. Phys. Lett. 99, 193303 (2011).
    [29] B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
    [30] M. F. Lo, T. W. Ng, T. Z. Liu, V. A. L. Roy, S. L. Lai, M. K. Fung, C. S. Lee and S. T. Lee, Appl. Phys. Lett. 96, 113303 (2010).
    [31] C. Deibel and V. Dyakonov, Rep. Prog. Phys.73, 096401 (2010).
    [32] L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss, M. Schrodner, Sol. Energy Mater. Sol. Cells 93, 476 (2009).
    [33] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4 (2013) Article number: 1446.
    [34] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
    [35] K. J. Kim, Y. S. Kim, W. S. Kang, B. H. Kang, S. H. Yeom, D. E. Kim, J. H. Kim, S. W. Kang, Sol. Energy Mater. Sol. Cell 94, 1303 (2010).
    [36] F. Cheng, G. Fang, X. Fan, H. Huang, Q. Zheng, P. Qin, H. Lei, Y. Li, Sol. Energy Mater. Sol. Cell 110, 63 (2013).
    [37] N. Espinosa, H. F. Dam, D. M. Tanenbaum, J. W. Andreasen, M. Jørgensen, F. C. Krebs, Materials 4, 169 (2011).
    [38] O. Abdulrazzaq, S. E. Bourdo, V. Saini, V. G. Bairi, E. Dervishi, T. Viswanathan, Z. A. Nima, and A. S. Biris, Energy Technol. 1, 463 (2013).
    [39] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett. 94, 043311 (2009).
    [40] X. Yan, B. Chu, W. Li, Z. Su, T. Zhang, F. Jin, B. Zhao, F. Zhang, D. Fan, Y. Gao, T. Tsuboi, J. Wang, H. Pi, and J. Zhu, Org. Electron. 14, 1805 (2013).
    [41] Y. Kinoshita, R. Takenaka, and H. Murata, Appl. Phys. Lett. 92, 243309 (2008).
    [42] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, R. A. J. Janssen, Org. Electron. 9, 727 (2008).
    [43] Y. Park, V. Choong, and Y. Gao, Appl. Phys. Lett. 68, 2699 (1996).
    [44] J. Liu, S. Shao, G. Fang, B. Meng, Z. Xie, and L. Wang, Adv. Mater. 24, 2774 (2012).
    [45] S. R. Cowan, A. Roy, and A. J. Heeger, Phys. Rev. B 82, 245207 (2010).
    [46] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
    [47] J. Mack and M. J. Stillman, J. Am. Chem. SOC. 116, 1292 (1994).
    [48] J. Mack and M. J. Stillman, Inorg. Chem. 36, 413 (1997).
    [49] J. Mack and M. J. Stillman, Inorg. Chem. 40, 812 (2001).
    [50] L. Edwards, M. Gouterman, J. Mol. Spectros. 33, 292 (1970).
    [51] A. M. Schaffer, M. Gouterman, and E. R. Davidson, Theor. Chim. Acta 30, 9 (1973).
    [52] A. Henriksson, M. Sundbom, Theor. Chim. Acta 27, 213 (1972).
    [53] A. Henriksson, B. Roos, and M. Sundbom, Theor. Chim. Acta 27, 303 (1972).
    [54] B. Adolphi, O. Berger, and W. J. Fischer, Appl. Surf. Sci. 179, 102 (2001).
    [55] W. J. Gammon, O. Kraft, A. C. Reilly, and B. C. Holloway, Carbon 41, 1917 (2003).
    [56] L. Li, M. Guan, G. Cao, Y. Li, and Y. Zeng, Displays 33, 17 (2012).
    [57] H. C. Cha, Y. C. Huang, F. H. Hsu, C. M. Chuang, D. H. Lu, C. W. Chou, C. Y. Chen, and C. S. Tsao, Sol. Energy Mater. Sol. Cells 130, 191 (2014).
    [58] J. J. van Franeker, W. P. Voorthuijzen, H. Gorter, K. H. Hendriks, R. A. J. Janssen, A. Hadipour, R. Andriessen, Y. Galagan, Sol. Energy Mater. Sol. Cells 117, 267 (2013).
    [59] F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrøm, M. S. Pedersen, Energy Environ. Sci. 3, 512 (2010).
    [60] Y. J. Cheng, S. H. Yang, and C. S. Hsu, Chem. Rev.109, 5868 (2009).
    [61] H. J. Son, B. Carsten, Energy Environ. Sci. 5, 8158 (2012).
    [62] P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
    [63] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 4218 (2004).
    [64] K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl and P. Heremans, Nat. Commun. 5, 3406 (2014).
    [65] Z. R. Hong, Z. H. Huang, and X. T. Zeng, Chem. Phys. Lett. 425, 62 (2006).
    [66] W. Zeng, K. S. Yong, Z. M. Kam, Z. k. Chena, and Y. Li, Synth. Met. 161, 2748 (2012).
    [67] Y. C. Tseng, A. U. Mane, J. W. Elam, and S. B. Darling, Sol. Energy Mater. Sol. Cell 99, 235 (2012).
    [68] S. Das, J. Joslin, T. L. Alford, and M. E. Thompson, Sol. Energy Mater. Sol. Cell 124, 98 (2014).
    [69] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006).
    [70] J. C. Wang, S. Q. Shi, C. W. Leung, S. P. Lau, K. Y. Wong, and P. K. L. Chan, Appl. Phys. Lett. 100, 053301 (2012).
    [71] X. Hao, S. Wang, W. Fu, T. Sakurai, S. Masuda, K. Akimoto, Org. Electron. 15 , 1773 (2014).
    [72] S. Fladischer, A. Neuhold, E. Kraker, T. Haber, B. Lamprecht, I. Salzmann, R. Resel, and W. Grogger, ACS Appl. Mater. Inter. 4, 5608 (2012).
    [73] S. Touihri, L. Cattin, D. T. Nguyen, M. Morsli, G. Louarn, A. Bouteville, V. Froger, J. C. Berne`de, Appl. Surf. Sci. 258, 2844 (2012).
    [74] Z. Su, L. Wang, Y. Li, H. Zhao, B. Chu and W. Li, Nanoscale Res. Lett. 7, 465 (2012).
    [75] F. C. Tang, J. Chang, W. Y. Chou, H. L. Cheng, Phys. Status Solidi A 209, 369 (2012).
    [76] A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, Phys. Rev. B. 82, 115306 (2010).
    [77] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997).
    [78] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys. 87, 572 (2000).
    [79] Y. W. Kim, M. L. Monroe, J. Seol, N. T. N. Truong, S. M. Cho, T. J. Anderson, and C. Park, Korean J. Chem. Eng. 25, 1036 (2008).
    [80] K. Sugiyama, H. Ishii, and Y. Ouchi, J. Appl. Phys. 87, 295 (2000).
    [81] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A. M. Hor, and H. Aziz, Appl. Phys. Lett. 78, 2595 (2001).
    [82] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, Appl. Phys. Lett. 103, 033518 (2013).
    [83] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, Md. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012).
    [84] J. You, Z. Hong, Y. (M.) Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).
    [85] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, Adv. Mater. 26, 4107 (2014).
    [86] C. H. Chiang, Z. L. Tsengb and C. G. Wu, J. Mater. Chem. A 2, 15897 (2014).
    [87] Z. Liu and E. C. Lee, Org. Electron. 24, 101 (2015).
    [88] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, Nat. Mater. 13, 897 (2014).
    [89] Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng and L. Han, Energy Environ. Sci. 7, 2934 (2014).
    [90] N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, J. Am. Chem. Soc. 137, 8696 (2015).
    [91] A. Dualeh, N. T´etreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Gr¨atzel, Adv. Funct. Mater. 24, 3250 (2014).
    [92] M. Saliba, K. W. Tan, H. Sai, D. T. Moore, T. Scott, W. Zhang, L. A. Estroff, U. Wiesner and H. J. Snaith, J. Phys. Chem. C 118, 17171 (2014).
    [93] H. L. Hsu, C. P. Chen, J. Y. Chang, Y. Y. Yua and Y. K. Shen, Nanoscale 6, 10281 (2014).
    [94] X. Xi, W. Li, J. Wu, J. Ji, Z. Shi and G. Li, Sol. Energy Mater. Sol. Cells 94, 2435 (2010).

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE