簡易檢索 / 詳目顯示

研究生: 謝東利
Hsieh, Dung-Lih
論文名稱: 四足類生化機器動物之建構及視覺伺服控制
Construction and Visual Servo Control of a Quadruped Bio-like Robot
指導教授: 蔡清元
Tsay, Tsing-Iuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系碩士在職專班
Department of Mechanical Engineering (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: 粗略動作轉換機器動物
外文關鍵詞: Rough Motion Transformation, Quadruped Robot
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隨著電子科技與控制技術之快速發展,近十年來各種類生化機器動物應運而生。由於其應用範圍包括娛樂、生活援助、家庭、災害救援等領域,因此吸引了各國研究人員積極地投入研究。本論文的目的在於設計ㄧ隻四足類生化機器動物與發展其利用視覺導引去咬拾目標物體的控制策略。
    在此所建構的四足類生化機器動物的特徵是每一隻腳有3個自由度,頭部也有3個自由度和1個下顎的自由度,以及ㄧ個嵌入在頭上的CCD攝影機。四足機器動物在執行咬拾的操作時分有兩個階段。第一個階段是機器動物往目標物體做趨進的動作,直到抵達參考位置時停止動作,然後進行第二個階段,機器動物緊鄰物體,並執行咬拾的動作。本論文並針對此一機器動物,提出以行為為基礎之看而後動的視覺導引控制策略。在第一個階段中此控制策略使用三個預先定義的影像特徵,而在第二個階段中,則使用六個預先定義的影像特徵。每一影像特徵透過模糊規則直覺式地決定相對於攝影機座標的一個自由度運動,此即所設計之行為。這些行為經過整合便可執行四足機器動物之趨進及咬拾任務。

    Abstract

    With advances in electronics and control tecnology, bio-like robots have been designed in the recent decade. They have been increasingly investigated by many researchers, and applied extensively in many fields, such as entertainment, life service, household chores and calamity rescue. The objective of this thesis is to create a quadruped bio-like robot and develop its control strategy for visually guided gripping of material.
    The quadruped bio-like robot constructed herein features 3 degrees of freedom for each leg, 3 for the head and another 1 for the mouth, as well as a head-mounted CCD camera. In the execution of gripping operations, the robot moves in two stages. In the first stage of movement, the robot walks toward the material and gets close to it. Then, in the second stage of movement, the robot stands next to the material and continues to perform the gripping manipulation. A vision-guided control strategy with a behavior-based look-and-move structure is proposed. The strategy is based on three predefined image features in the first stage and six predefined image features in the second stage. In the designed neural fuzzy controllers, each image feature is taken to generate intuitively one DOF motion command relative to the camera coordinate frame using fuzzy rules, which define a specific visual behavior. These behaviors are then combined and executed in turns to perform approaching and gripping tasks.

    中文摘要................................................i 英文摘要................................................ii 誌謝....................................................iii 目錄....................................................iv 圖目錄..................................................vii 表目錄..................................................x 第一章 緒論.............................................1 1.1前言.................................................1 1.2研究動機與目的.......................................1 1.3文獻回顧.............................................2 1.4貢獻.................................................3 1.5本文內容與架構.......................................4 第二章 四足機器動物之建構與設計.........................6 2.1四足類生化機器動物之機構設計.........................6 2.3.1四足機器動物頭部之設計.............................7 2.3.1四足機器動物腿部之設計.............................7 2.2視覺系統.............................................8 2.3MSP430微控器控制板...................................9 2.3.1 MSP430微控器控制板................................9 2.3.2電力板.............................................10 2.4伺服機(GWServo S03T) ................................10 2.5PC與MSP430控制系統整合架構...........................11 第三章 步態分析.........................................23 3.1步態研究.............................................23 3.1.1四足機械人的六種舉腳順序...........................24 3.1.2軸向穩定度.........................................25 3.2運動學方程式.........................................27 3.2.1 D-H座標連桿表示法.................................27 3.2.2腿部運動方程式.....................................29 3.2.3頭部運動方程式.....................................31 3.2.4機器頭部與機器腿部之座標轉換.......................33 3.3抬腳與支撐腳之路徑規劃...............................33 3.4抬腳與支撐腳之參數設定...............................34 第四章 影像處理.........................................43 4.1影像前處理...........................................43 4.2計算影像面積與重心...................................43 4.3估測影像主軸.........................................44 4.4四邊形角落判定.......................................44 4.4.1邊緣偵測...........................................44 4.4.2Least-Squares Line Fitting.........................45 4.4.3四邊形角落判定.....................................47 第五章 以行為基礎之影像伺服控制.........................50 5.1影像特徵選取.........................................51 5.2基於行為模式之動作規劃...............................52 5.2.1趨進...............................................53 5.2.2逼近與環繞.........................................53 5.2.3類神經模糊控制器...................................54 5.3粗略動作轉換(Rough Motion Transformation)............57 5.4控制策略.............................................59 第六章 實驗.............................................69 6.1描述實驗的設定過程...................................70 6.2機器狗趨進目標位置...................................70 6.3機器狗逼進與撿拾目標物...............................72 第七章 結論與未來展望...................................75 參考文獻................................................76

    [1]. M. Vukobratovi, Legged Locomotion Robots, 1983.
    [2]. R. McGhee, Some Finite State Aspects of Legged Locomotion, Mathematical
    Biosciences, pp.67-84, 1968.
    [3]. D. M. Todd and K. J. Waldron, Walking Machines:An Introduction to Legged
    Robots,Kogan Page, 1985.
    [4]. V.T. Inman, H.J. Ralston and F. Todd, Human Walking, Williams&Wilkins,
    Baltimore, 1981.
    [5]. M. Miura, and I. Shimoyama, “Dynamic Walk of a Biped,” International
    Journal of Robotics Research, Vol. 3, No. 2, 1984, pp. 60-74.
    [6]. S. Hirose, “A Study of Design and Control of a Quadruped Walking
    Vehicle,” The International Journal of Robotics Research, Vol. 3,
    No.2, 1984, pp.113-133.
    [7]. S. Hirose and K. Kunieda, “Generalized Standard Foot Trajectory for a
    Quadruped Walking Vehicle,” The International Journal of Robotics
    Research, Vol. 10, No. 1,Feb. 1991, pp.3-12.
    [8]. S. M. Song and K. J. Waldron, Machines That Walk: The Adaptive Suspension
    Vehicle, The MIT Press, 1989.
    [9]. D. J. Todd, Walking Machines: An Introduction to Legged Robots, Kogan
    Page,1985.
    [10]. M. H. Raibert, H. B. Brown and J. M. Chepponis, “Experiments in Balance
    with a 3D One Legged Hopping Machine,” The International Journal of
    Robotics Research, Vol. 3, No. 2, 1984, pp.75-92.
    [11]. A. Schrott, “Feature-Based Camera-Guided Grasping by an Eye-in-Hand
    Robot,”Proceedings of the IEEE International Conference on Robotics and
    Automation, May 1992, pp.1832-1837.
    [12]. Y. Ting, Y. H. Chen, M. Lin, S. C. Dai and Y. Kang, “A Study on the
    Inaccuracy of Vision Systems of Mobile Robots Causing the Failure of
    Pick-and-Place Tasks,”Proceedings of the Florida Conference on Recent
    Advances in Robotics, Apr. 1997, pp.43-46,.
    [13]. R. Kelly, R. Carelli, O. Nasisi, B. Kuchen and F. Reyes, “Stable Visual
    Servoing of Camera-in-Hand Robotics Systems,” IEEE/ASME Transactions on
    Mechatronics, Vol. 5, No. 1, Apr. 1997, pp39-48.
    [14]. Y. F. Lai, “Behavior-Based Pose Control of Robot Manipulators with an
    Uncalibrated Eye-in-Hand Vision System,” M. S. Thesis, Department of
    Mechanical Engineering, National Cheng Kung University, R. O. C., 2004.
    [15]. I. H. Suh, T. W. Kim, S. Heu and S. K. Oh, “Visual Servoing by a Fuzzy
    Reasoning Method,” IEEE/RSJ International Workshop on Intelligent
    Robots and Systems, Nov. 1991, pp.111-116.
    [16]. I. H. Suh and T. W. Kim, “Fuzzy Membership Function Based Neural
    Networks with Applications to the Visual Servoing of robot
    Manipulators,” IEEE Transactions on Fuzzy Systems, Vol. 2, No. 3, Aug.
    1994, pp.203-220.
    [17]. I. H. Suh and T. W. Kim, “A Fuzzy-Neural-Network-Based Visual Feedback
    Learning Control for Robot Manipulators,” Proceedings of the IEEE
    International Conference on Computation Intelligence, Vol. 5, No. 27,
    July 1994, pp.2781-2786.
    [18]. I. H. Suh and T. W. Kim, “A Visual Servoing Algorithm using Fuzzy
    Logics and Fuzzy-Neural Networks,” Proceedings of the IEEE
    International Conference on Robotics and Automation, April 1996,
    pp.3605-3612.
    [19]. A. Anglani, F. Taurisano, R. D. Giuseppe and C. Distante, “Learning to
    Grasp by using Visual Information,” Proceedings of the IEEE
    International Symposium on Computational Intelligence in Robotics and
    Automation, Nov. 1999, pp.7-14.
    [20]. R. D. Giuseppe, F. Taurisano, C. Distante and A. Anglani, “Visual
    Servoing of a Robotic Manipulator Based on Fuzzy Logic Control,”
    Proceedings of the IEEE International Conference on Robotics and
    Automation, Vol. 2, May 1999, pp.1487-1494.
    [21]. Z. Wasik and A. Saffiotti, “A Fuzzy Behavior-Based Control System for
    Manipulation,” Proceedings of the IEEE/RSJ International Conference on
    Intelligent Robots and Systems, Oct. 2002, pp.1596-1601.
    [22]. Z. Wasik and A. Saffiotti, “A Hierarchical Behavior-Based Approach to
    Manipulation Tasks,” Proceedings of the IEEE International Conference
    on Robots and Automation, Sept. 2003, pp.2780-2785.
    [23]. H. Adaci, N. Koyachi, T. Arai and Y. Shinohara “Human-operated walking
    control of a quadruped by event-driven method,” Proceedigs of the 1997
    IEEE/RSJ International Conference on Intelligent Robots and Systems,
    Vol. 1, 7-11 Sept. 1997, pp.260-265.
    [24]. H. Tsukagoshi and S. Hirose, K. Yoneda “Maneuvering operations of the
    quadruped walking robot on the slope,” Proceedigs of the 1996 IEEE/RSJ
    International Conference on Intelligent Robots and Systems, Vol. 2, 4-8
    Nov. 1996, pp.893-869.
    [25]. S. Hirose “A Study of Design and Control a Quadruped walking Vehicle”,
    The International Journal of Robotics Research, Vol. 3, No. 2, 1984,
    pp.113-133.
    [26]. S. C. Byoung and M. S. Shin, “Fully Automated Obstacle-Crossing Gaits
    for Walking Machines,” 1988.
    [27]. R. Kelly, R. Carelli, O. Nasisi, B. Kuchen and F. Reyes, “Stable Visual
    Servoing of Camera-in-Hand Robotics Systems,” IEEE/ASME Transactions on
    Mechatronics, Vol. 5, No. 1, Mar. 2000, pp39-48.
    [28]. I. H. Suh and T. W. Kim, “A Visual Servoing Algorithm using Fuzzy
    Logics and Fuzzy-Neural Networks,” Proceedings of the IEEE
    International Conference on Robotics and Automation, April 1996,
    pp.3605-3612.
    [29]. I. H. Suh and T. W. Kim, “Fuzzy Membership Function Based Neural
    Networks with Applications to the Visual Servoing of robot
    Manipulators,” IEEE Transactions on Fuzzy Systems, Vol. 2, No. 3,
    pp.203-220, Aug. 1994.
    [30]. C. T. Lin and G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Synergism to
    Intelligent Systems, Upper Saddle River, NJ: Prentice Hall PTR, 1996.
    [31]. J. G. Kim, D. H. Cha, H. S. Cho and S. H. Kim, “An Auto Tuning Fuzzy
    Rule-Based Visual Servoing Algorithm for a Slave Arm,” Proceedings of
    the IEEE International Symposium on Intelligent Control, Aug. 1995,
    pp.177-182.
    [32]. H. Nomura, I. Hayashi and N. Wakami, “A Learning Method of Fuzzy
    Inference Rules by Descent Method,” Proceedings of the IEEE
    International Conference on Fuzzy Systems, Mar. 1992, pp.203-210.

    下載圖示 校內:2011-09-06公開
    校外:2016-09-06公開
    QR CODE