| 研究生: |
陳信宏 Chen, Hsin-Hung |
|---|---|
| 論文名稱: |
微型電漿噴流應用於有機化合物處理及對噴流進行特性分析 Application of Micro-plasma Jet on the Treatment of Organic Compounds and Characterization of the Jet Plume |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 微型電漿噴流 、AZ-650正型光阻 、二甲基硫 、電子密度 |
| 外文關鍵詞: | micro-plasma jet, AZ-650 positive photo-resist, dimethyl sulfide, electron density |
| 相關次數: | 點閱:67 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新式微型電漿可於一大氣壓下低溫操作(室溫至攝氏一到兩百度),近十年來受到廣泛的矚目。相較於傳統的低壓低溫電漿,微型電漿不需要真空系統,可大幅降低應用成本。在各式微電漿系統,微型電漿噴流具有結構設計不受處理基材幾何形狀的限制、不易誘發電弧及容易進行陣列等優勢,使用上具有彈性及工業應用潛力。於本研究中,使用微型電漿噴流於固態的AZ-650正型光阻(Photo-resist)及氣態的二甲基硫(Dimethyl sulfide, DMS)有機化合物之處理。於光阻的處理上,氬氣及氮氣微型電漿噴流系統(內外電極型式)分別被應用來對於光阻層的剝除進行處理及評估。分析結果顯示氬氣微型電漿與光阻間的反應屬於較簡單物理效應,相較於氮氣微型電漿較不易引起電漿物種與光阻間的反應,大幅降低了光阻移除所需時間。於二甲基硫的處理上,將微電漿電極設置於石英氣體流管的外側,以避免副產物形成並黏附於內電極上而降低處理效率;同時,以串聯方式排列兩組微電漿電極延長二甲基硫於電漿反應區中停留的時間以提升分解效能。採用此電極配置方式,可於90 W的外加功率下,將400ppm二甲基硫完全分解為以氫(H2)、二硫化碳(CS2)及硫化氫(H2S)為主的副產物。
為了瞭解電漿狀態隨輸入參數變化的關係,對於噴流特性分析有其必要性,以光譜強度比值法(line-ratio method)搭配光學放射光譜法對氬氣微型電漿噴流進行電子密度評估,結果顯示微型電漿噴流的電子密度約為0.2-2×1013 cm-3。於影響因子分析方面,電子密度的變化受激發功率的影響大於受氣體流率的影響;探針溫度主要受氣體流率影響,分布於攝氏40-90度間。
綜合上述研究,微型電漿噴流適合應用於有機化合物處理(AZ-650正型光阻及二甲基硫)。而經由適當的電漿特性分析,可以增進操作參數對於電漿狀態變化的了解,以促進微型電漿使用的效能。
Novel micro-plasma jet devices which can be operated under atmospheric pressure with low temperature (ambient temperature to a few hundreds degree Celsius) have drawn a number of attentions in the last decade. Comparing to traditional non-thermal plasma, micro-plasma without vacuum system can reduce the prime cost and therefore enhance its potential for industrial usage. Among various micro-plasma types, micro-plasma jet that takes advantage of high treatment depth and free-arc characteristic has a potential to be applied in line. In this thesis, the applications of micro-plasma jet on AZ-650 positive photo-resist (solid phase) and dimethyl sulfide (DMS: gaseous phase) treatment are studied, respectively. In the former case, a micro-plasma jet system was utilized to evaluate the photo-resist removal effect. Argon and nitrogen micro-plasmas were respectively employed as the working gases and performed under atmospheric pressure. Argon micro-plasma leading to a simple physical effect with reduced reaction steps is much proficient to remove photo-resist molecules from the substrate. For the DMS treatment, a custom-made two-outer-electrode argon micro-plasma jet was employed to decompose DMS into a non-foul-smelling species. As 400 ppm DMS was introduced into argon plasma with two pairs of electrodes (90 W), a complete decomposition of DMS was achieved. The dissociation mechanism and treatment efficiency are discussed, and a treatment of converting DMS into H2-, CS2-, and H2S-dominant by-products is proposed.
In addition, in order to improve the level of understanding of the relationship between control parameters and the impact of the plasma, a characterization of the plasma parameters of the jet plume is mandatory. The results demonstrates the electron density is in the range of 0.2-21013 cm-3 and is predominantly determined by the excitation power rather than the gas flow rate, whereas the probe temperature mainly depends on the gas flow rate and covers a range of about 40-90 °C.
Based on this research, micro-plasma jet operating under atmospheric pressure with low temperature is promising for the treatment on targeted organic compounds. Furthermore, with relevant characterisation, the operation of micro-plasma jet can be improved based on the better understanding of plasma condition as function of operating parameter.
[1] C. N. Lei, L. M. Whang and H. L. Lin, "Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater", Water Science and Technology, vol. 58, pp. 1001-1006, 2008.
[2] K. Takagi, A. Ikeda, T. Fujimura and Y. Kuroki, "Inductively coupled plasma application to the resist ashing", Thin Solid Films, vol. 386, pp. 160-164, 2001.
[3] D. B. Graves, "Plasma Processing", IEEE Transactions on Plasma Science, vol. 22, pp. 31-42, 1994.
[4] H. Yoshiki, K. Taniguchi and Y. Horiike, "Localized removal of a photoresist by atmospheric pressure micro-plasma jet using RF corona discharge", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 5797-5798, 2002.
[5] H. Yoshiki, "Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet", Review of Scientific Instruments, vol. 78, pp. 2007.
[6] M. H. Jung and H. S. Choi, "Photoresist etching using Ar/O-2 and He/O-2 atmospheric pressure plasma", Thin Solid Films, vol. 515, pp. 2295-2302, 2006.
[7] D. Mariotti, "Nonequilibrium and effect of gas mixtures in an atmospheric microplasma", Applied Physics Letters, vol. 92, pp. 151505, 2008.
[8] A. Yanguas-Gil, K. Focke, J. Benedikt and A. von Keudell, "Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH4 and Ar/C2H2 mixtures", Journal of Applied Physics, vol. 101, pp. 103307, 2007.
[9] W. H. Chiang, M. Cochey, R. C. Vimelson and R. M. Sankaran, "Nonlithographic fabrication of surface-enhanced Raman scattering substrates using a rastered atmospheric-pressure microplasma source", Applied Physics Letters, vol. 91, pp. 021501, 2007.
[10] Y. C. Hong and H. S. Uhm, "Microplasma jet at atmospheric pressure", Applied Physics Letters, vol. 89, pp. 221504, 2006.
[11] M. Moravej, X. Yang, M. Barankin, J. Penelon, S. E. Babayan and R. F. Hicks, "Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma", Plasma Sources Science & Technology, vol. 15, pp. 204-210, 2006.
[12] C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, M. Grunze and M. Zharnikov, "Modification of aliphatic self-assembled monolayers by free-radical-dominant plasma: The role of the plasma composition", Langmuir, vol. 20, pp. 10093-10099, 2004.
[13] J. D. Liao, M. C. Wang, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov and M. Grunze, "Modification of alkanethiolate self-assembled monolayers by free radical-dominant plasma", Journal of Physical Chemistry B, vol. 106, pp. 77-84, 2002.
[14] J. D. Liao, C. Y. Chen, Y. T. Wu and C. C. Weng, "Hydrophilic treatment of the dyed nylon-6 fabric using high-density and extensible antenna-coupling microwave plasma system", Plasma Chemistry and Plasma Processing, vol. 25, pp. 255-273, 2005.
[15] L. A. Rosocha and Y. Kim, Application of non-thermal plasmas to gas cleaning and enhancing combustion pollution reduction, International Conference on Air Pollution Abatement Technologies-future challenges, Queensland, Australia, Paper 5C2, 2006
[16] R. Bentley and T. G. Chasteen, "Environmental VOSCs - formation and degradation of dimethyl sulfide, methanethiol and related materials", Chemosphere, vol. 55, pp. 291-317, 2004.
[17] H. Chu, W. T. Lee, K. H. Horng and T. K. Tseng, "The catalytic incineration of (CH3)(2)S and its mixture with CH3SH over a Pt/Al2O3 catalyst", Journal of Hazardous Materials, vol. 82, pp. 43-53, 2001.
[18] J. R. Kastner, K. C. Das and N. D. Melear, "Catalytic oxidation of gaseous reduced sulfur compounds using coal fly ash", Journal of Hazardous Materials, vol. 95, pp. 81-90, 2002.
[19] J. Jarrige and P. Vervisch, "Decomposition of gaseous sulfide compounds in air by pulsed corona discharge", Plasma Chemistry and Plasma Processing, vol. 27, pp. 241-255, 2007.
[20] M. Leins, L. Alberts, M. Kaiser, M. Walker, A. Schulz, U. Schumacher and U. Stroth, "Development and Characterisation of a Microwave-heated Atmospheric Plasma Torch", Plasma Processes and Polymers, vol. 6, pp. S227-S232, 2009.
[21] M. Nantel-Valiquette, Y. Kabouzi, E. Castanos-Martinez, K. Makasheva, M. Moisan and J. C. Rostaing, "Reduction of perfluorinated compound emissions using atmospheric pressure microwave plasmas: Mechanisms and energy efficiency", Pure and Applied Chemistry, vol. 78, pp. 1173-1185, 2006.
[22] C. H. Tsai, W. J. Lee, C. Y. Chen and W. T. Liao, "Decomposition of CH3SH in a RF plasma reactor: Reaction products and mechanisms", Industrial & Engineering Chemistry Research, vol. 40, pp. 2384-2395, 2001.
[23] C. H. Tsai, W. J. Lee, C. Y. Chen, W. T. Liao and M. Shih, "Formation of solid sulfur by decomposition of carbon disulfide in the oxygen-lean cold plasma environment", Industrial & Engineering Chemistry Research, vol. 41, pp. 1412-1418, 2002.
[24] C. H. Tsai, W. J. Lee, C. Y. Chen, P. J. Tsai, G. C. Fang and M. L. Shih, "Difference in conversions between dimethyl sulfide and methanethiol in a cold plasma environment", Plasma Chemistry and Plasma Processing, vol. 23, pp. 141-157, 2003.
[25] J. S. Chang, "Recent development of plasma pollution control technology: a critical review", Science and Technology of Advanced Materials, vol. 2, pp. 571-576, 2001.
[26] C. Subrahmanyam, A. Magureanu, A. Renken and L. Kiwi-Minsker, "Catalytic abatement of volatile organic compounds assisted by non-thermal plasma - Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode", Applied Catalysis B-Environmental, vol. 65, pp. 150-156, 2006.
[27] S. E. Park, R. Ryoo, W. S. Ahn, C. W. Lee and J.-S. Chang, Nanotechnology in mesostructured materials :proceedings of the 3rd International Mesostructured Materials Symposium, Amsterdam, 2003
[28] G. B. Zhao, S. John, J. J. Zhang, J. C. Hamann, S. S. Muknahallipatna, S. Legowski, J. F. Ackerman and M. D. Argyle, "Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor", Chemical Engineering Science, vol. 62, pp. 2216-2227, 2007.
[29] M. G. Sobacchi, A. V. Saveliev, A. A. Fridman, A. F. Gutsol and L. A. Kennedy, "Experimental assessment of pulsed corona discharge for treatment of VOC emissions", Plasma Chemistry and Plasma Processing, vol. 23, pp. 347-370, 2003.
[30] R. Foest, M. Schmidt and K. Becker, "Microplasmas, an emerging field of low-temperature plasma science and technology", International Journal of Mass Spectrometry, vol. 248, pp. 87-102, 2006.
[31] A. Koutsospyros, S. M. Yin, C. Christodoulatos and K. Becker, "Destruction of hydrocarbons in non-thermal, ambient-pressure, capillary discharge plasmas", International Journal of Mass Spectrometry, vol. 233, pp. 305-315, 2004.
[32] A. D. Koutsospyros, S. M. Yin, C. Christodoulatos and K. Becker, "Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor", Ieee Transactions on Plasma Science, vol. 33, pp. 42-49, 2005.
[33] V. Schulz-von der Gathen, V. Buck, T. Gans, N. Knake, K. Niemi, S. Reuter, L. Schaper and J. Winter, "Optical diagnostics of micro discharge jets", Contributions to Plasma Physics, vol. 47, pp. 510-519, 2007.
[34] J. D. Swift and M. J. R. Schwar, Electrical Probes for Plasma Diagnostics, Iliffe Books, London, 1970.
[35] F. Leipold, R. H. Stark, A. El-Habachi and K. H. Schoenbach, "Electron density measurements in an atmospheric pressure air plasma by means of infrared heterodyne interferometry", Journal of Physics D-Applied Physics, vol. 33, pp. 2268-2273, 2000.
[36] S. G. Belostotskiy, R. Khandelwal, Q. Wang, V. M. Donnelly, D. J. Economou and N. Sadeghi, "Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering", Applied Physics Letters, vol. 92, pp. 221507, 2008.
[37] J. Torres, J. M. Palomares, A. Sola, J. J. A. M. van Dermullen and A. Gamero, "A Stark broadening method to determine simultaneously the electron temperature and density in high-pressure microwave plasmas", Journal of Physics D-Applied Physics, vol. 40, pp. 5929-5936, 2007.
[38] H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York, 1964.
[39] N. Balcon, A. Aanesland and R. Boswell, "Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon", Plasma Sources Science & Technology, vol. 16, pp. 217-225, 2007.
[40] J. Schäfer, R. Foest, A. Ohl and K. D. Weltmann, "Miniaturized non-thermal atmospheric pressure plasma jet-characterization of self-organized regimes", Plasma Physics and Controlled Fusion, vol. 51, pp. 124045, 2009.
[41] H. Akatsuka, "Excited level populations and excitation kinetics of nonequilibrium ionizing argon discharge plasma of atmospheric pressure", Physics of Plasmas, vol. 16, pp. 043502, 2009.
[42] A. Yanguas-Gil, J. Cotrino and A. R. González-Elipe, "Collisional radiative model of an argon atmospheric capillary surface-wave discharge", Physics of Plasmas, vol. 11, pp. 5497-5506, 2004.
[43] X. M. Zhu, W. C. Chen and Y. K. Pu, "Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma", Journal of Physics D-Applied Physics, vol. 41, pp. 105212, 2008.
[44] X. M. Zhu, Y. K. Pu, N. Balcon and R. Boswell, "Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy", Journal of Physics D-Applied Physics, vol. 42, pp. 142003, 2009.
[45] K. Urabe, T. Morita, K. Tachibana and B. N. Ganguly, "Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements", Journal of Physics D-Applied Physics, vol. 43, pp. 095201, 2010.
[46] R. Reuter, D. Ellerweg, A. von Keudell and J. Benedikt, "Surface reactions as carbon removal mechanism in deposition of silicon dioxide films at atmospheric pressure", Applied Physics Letters, vol. 98, pp. 111502, 2011.
[47] S. Rupf, A. Lehmann, M. Hannig, B. Schaefer, A. Schubert, U. Feldmann and A. Schindler, "Killing of adherent oral microbes by a non-thermal atmospheric plasma jet", Journal of Medical Microbiology, vol. 59, pp. 206-212, 2010.
[48] A. Grill, Cold Plasma in Material Fabrication, IEEE Press, New York, 1994.
[49] I. Langmuir, "Oscillations in Ionized Gases", Proceedings of the National Academy of Sciences of the United States of America, vol. 14, pp. 627-637, 1928.
[50] D. D.-W. Hsu, Characteristics and Applications of High Pressure Microplasmas, PhD Thesis, University of California at Berkeley, Berkeley, 2003.
[51] A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources", IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998.
[52] C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, "Atmospheric pressure plasmas: A review", Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 61, pp. 2-30, 2006.
[53] A. Ağıral, Electron Driven Chemistry in Microreactors, PhD Thesis, University of Twente, Enschede, The Netherlands, 2009.
[54] K. Tachibana, "Current status of microplasma research", IEEJ Transactions on Electrical and Electronic Engineering, vol. 1, pp. 145-155, 2006.
[55] K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin and W. W. Byszewski, "Microhollow cathode discharges", Applied Physics Letters, vol. 68, pp. 13-15, 1996.
[56] E. E. Kunhardt and K. H. Becker, Glow plasma discharge device having electrode covered with perforated dielectric, US 5872426, USA, 1999
[57] K. H. Becker, K. H. Schoenbach and J. G. Eden, "Microplasmas and applications", Journal of Physics D-Applied Physics, vol. 39, pp. R55-R70, 2006.
[58] R. Hippler, H. Kersten, M. Schmidt and K. H. Schoenbach, Low Temperature Plamsma: Fundamentals, Technologies, and Techniques, Wiley-VCH, Weiheim, Germany, 2008.
[59] M. Laroussi and T. Akan, "Arc-free atmospheric pressure cold plasma jets: A review", Plasma Processes and Polymers, vol. 4, pp. 777-788, 2007.
[60] J. Janča, M. Klı́ma, P. Slavı́ček and L. Zajı́čková, "HF plasma pencil - new source for plasma surface processing", Surface & Coatings Technology, vol. 116, pp. 547-551, 1999.
[61] I. E. Kieft, D. Darios, A. J. M. Roks and E. Stoffels, "Plasma treatment of mammalian vascular cells: A quantitative description", IEEE Transactions on Plasma Science, vol. 33, pp. 771-775, 2005.
[62] G. A. Dawson and W. P. Winn, "A model for streamer propagation", Zeitschrift Fur Physik, vol. 183, pp. 159-171, 1965.
[63] X. Lu and M. Laroussi, "Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses", Journal of Applied Physics, vol. 100, pp. 063302, 2006.
[64] F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang and M. G. Kong, "Microplasmas: Sources, particle kinetics, and biomedical applications", Plasma Processes and Polymers, vol. 5, pp. 322-344, 2008.
[65] C. C. Weng, Y. T. Wu, J. D. Liao, C. Y. Kao, C. C. Chao, J. E. Chang and B. W. Hsu, "Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time", International Journal of Radiation Biology, vol. 85, pp. 362-368, 2009.
[66] S. A. Ermolaeva, A. F. Varfolomeev, M. Y. Chernukha, D. S. Yurov, M. M. Vasiliev, A. A. Kaminskaya, M. M. Moisenovich, J. M. Romanova, A. N. Murashev, Selezneva, II, T. Shimizu, E. V. Sysolyatina, I. A. Shaginyan, O. F. Petrov, E. I. Mayevsky, V. E. Fortov, G. E. Morfill, B. S. Naroditsky and A. L. Gintsburg, "Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds", Journal of Medical Microbiology, vol. 60, pp. 75-83, 2011.
[67] J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. von Woedtke, R. Brandenburg, T. von dem Hagen and K. D. Weltmann, "Low temperature atmospheric pressure plasma sources for microbial decontamination", Journal of Physics D-Applied Physics, vol. 44, pp. 013002, 2011.
[68] A. P. Thorne, Spectrophysics, Chapman and Hall, New York, 1988.
[69] U. Fantz, "Basics of plasma spectroscopy", Plasma Sources Science & Technology, vol. 15, pp. S137-S147, 2006.
[70] A. P. Thorne, U. Litzén and S. Johansson, Spectrophysics: principles and applications, Springer, Berlin, 1999.
[71] D. Briggs and M. P. Seah, Pratical Surface Analysis, 2nd ed. , John Wiley & Sons Ltd, Chichester, 1990.
[72] Y. T. Wu, J. D. Liao, J. I. Lin and C. C. Lu, "Determination of the optimized conditions for coupling Oligonucleotides with 16-mercaptohexadecanoic acid chemically adsorbed upon au", Bioconjugate Chemistry, vol. 18, pp. 1897-1904, 2007.
[73] R. Brandenburg, H. E. Wagner, A. M. Morozov and K. V. Koziov, "Axial and radial development of microdischarges of barrier discharges in N-2/O-2 mixtures at atmospheric pressure", Journal of Physics D-Applied Physics, vol. 38, pp. 1649-1657, 2005.
[74] M. Iwasaki, Y. Matsudaira, K. Takeda, M. Ito, E. Miyamoto, T. Yara, T. Uehara and M. Hori, "Roles of oxidizing species in a nonequilibrium atmospheric-pressure pulsed remote O-2/N-2 plasma glass cleaning process", Journal of Applied Physics, vol. 103, pp. 023303, 2008.
[75] K. Tachibana, Y. Kishimoto and O. Sakai, "Measurement of metastable He-*(2(3)S(1)) density in dielectric barrier discharges with two different configurations operating at around atmospheric pressure", Journal of Applied Physics, vol. 97, pp. 123301, 2005.
[76] A. V. Pipa, T. Bindemann, R. Foest, E. Kindel, J. Ropcke and K. D. Weltmann, "Absolute production rate measurements of nitric oxide by an atmospheric pressure plasma jet (APPJ)", Journal of Physics D-Applied Physics, vol. 41, pp. 194011, 2008.
[77] K. Urabe, Y. Ito, K. Tachibana and B. N. Ganguly, "Behavior of N-2(+) ions in he microplasma jet at atmospheric pressure measured by laser induced fluorescence spectroscopy", Applied Physics Express, vol. 1, pp. 066004, 2008.
[78] H. H. Chen, C. C. Weng, J. D. Liao, K. M. Chen and B. W. Hsu, "Photo-resist stripping process using atmospheric micro-plasma system", Journal of Physics D-Applied Physics, vol. 42, pp. 135201, 2009.
[79] R. W. B. Pearse and A. G. Gaydon, The identification of molecular spectra, 4th, Chapman and Hall, London, 1976.
[80] Q. Xiong, A. Y. Nikiforov, X. P. Lu and C. Leys, "High-speed dispersed photographing of an open-air argon plasma plume by a grating-ICCD camera system", Journal of Physics D-Applied Physics, vol. 43, pp. 415201, 2010.
[81] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition, 3rd, Wiley, Chichester, 2004.
[82] A. R. Siekkinen, J. M. McLellan, J. Y. Chen and Y. N. Xia, "Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide", Chemical Physics Letters, vol. 432, pp. 491-496, 2006.
[83] J. C. Enneking, "Control of carbon disulfide emissions from viscose processes", Environmental Progress, vol. 21, pp. 169-174, 2002.
[84] R. Foest, E. Kindel, H. Lange, A. Ohl, M. Stieber and K. D. Weltmann, "RF capillary jet - a tool for localized surface treatment", Contributions to Plasma Physics, vol. 47, pp. 119-128, 2007.
[85] Q. Wang, F. Doll, V. M. Donnelly, D. J. Economou, N. Sadeghi and G. F. Franz, "Experimental and theoretical study of the effect of gas flow on gas temperature in an atmospheric pressure microplasma", Journal of Physics D-Applied Physics, vol. 40, pp. 4202-4211, 2007.
[86] G. W. F. Drake, Atomic, Molecular, & Optical Physics Handbook, Springer, New York 1996.
[87] O. Vallee, P. Ranson and J. Chapelle, "Measurements of Broadening of Argon Lines and Oscillator-Strengths of Resonance Lines", Journal of Quantitative Spectroscopy & Radiative Transfer, vol. 18, pp. 327-336, 1977.
[88] R. S. Knox, "Excited-State Wave Functions, Excitation Energies, and Oscillator Sterngths for Argon (3P54S)", Physical Review, vol. 110, pp. 375-381, 1958.