簡易檢索 / 詳目顯示

研究生: 柯孟辰
Ko, Meng-Chen
論文名稱: 二維材料對鐵電晶相間相互極化以及薄膜壓電發電機效能的影響
Influences of deposited 2D molecules on mutual polarization between ferroelectric crystals and the output of piezoelectric nanogenerators
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: 複合材料長寬比相互極化二維材料感應偶極矩壓電奈米發電機
外文關鍵詞: Nanocomposites, Aspect ratio, mutual polarization, 2-D materials, induced dipole, piezoelectric nanogenerator
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電高分子較其他壓電材料具有高可撓曲性且生物相容性高等優點,在穿戴式元件的應用之中被廣泛應用,但目前比較起壓電係數高的無機壓電材料,仍有輸出過低的缺點。而在壓電高分子基材中混摻高壓電性的無機填料,已經被廣泛用來提高壓電奈米發電機的輸出功率。因此研究中為了改善高分子晶相的壓電性質,將藉由調控PVDF-TrFE/PMMA薄膜與氧化鋅的複合薄膜中氧化鋅奈米柱(ZnO nanorods)長寬比,用以調控和聚(偏二氟乙烯-三氟乙烯) (PVDF-TrFE)鐵電板晶之間的相互極化作用強度,使得薄膜壓電輸出大幅提升。
    透過調控水熱法溶液的濃度及成份比例我們確認了溶液中氫氧根離子對氧化鋅晶體生成形貌的影響。再藉由壓電力顯微鏡 (PFM)的量測,發現不同長寬比的氧化鋅奈米柱與周圍PVDF-TrFE 鐵電板晶的相互極化作用強度不同,說明晶相間的相互極化會被晶相的極性大小影響而有所不同。透過PFM量測距離氧化鋅較遠的板晶壓電係數,確認了晶相間的相互極化作用會隨距離衰減,因此推測相互極化作用僅被侷限於小尺度範圍內。
    為了提升薄膜整體壓電性質,添加富含未定域化電子的石墨烯以誘導偶極的方式與高分子板晶形成相互極化作用,解決氧化鋅及高分子板晶相互極化作用隨距離衰減的問題,使薄膜奈米壓電發電機的輸出提升6倍。

    Blending piezoelectric polymer with piezoelectric inorganic fillers has been widely used to increase the output power of piezoelectric nanogenerators. Therefore, in order to improve the piezoelectric properties of polymer, the aspect ratio of zinc oxide nanorods in the composite film will be adjusted to control the mutual polarization effect between the ferroelectric crystals. The strength of the mutual polarization between them makes the piezoelectric output of the film greatly improved. By adjusting the concentration and composition ratio of the hydrothermal solution, we confirmed the influence of hydroxide ions in the solution on the morphology of zinc oxide crystals. Through the measurement of the piezoelectric force microscope(PFM), it is found that the mutual polarization strength of the ZnO nanorods with different aspect ratios and polymer is different, indicating that the mutual polarization between the crystal phases will be controlled by the crystal morphology.
    Through the measurement PFM of the piezoelectric coefficient of the lamellar crystal far away from the zinc oxide, it is confirmed that the mutual polarization between the crystal phases will decay with the distance, so it is speculated that the mutual polarization is only limited to a small scale. In order to improve the overall piezoelectric properties of the film, graphene is added to induce dipoles to form mutual polarization with polymer lamellar crystals. Solving the problem of mutual polarization between zinc oxide and polymer lamellar crystals will decay with distance. The output of thin-film piezoelectric nanogenerators is increased by 6 times.

    摘要 i 英文延伸摘要 ii 誌謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第1章 緒論 1 1.1 研究背景與動機 1 第2章 文獻回顧 2 2.1 材料的極化 2 2.1-1 材料的極化現象 2 2.1-2 鐵電材料的極化 4 2.1-3 壓電效應 6 2.1-4 壓電係數的介紹與量測 8 2.2 壓電材料的種類 11 2.2-1 PVDF及其共聚物PVDF-TrFE 11 2.2-2 提高PVDF-TrFE壓電性質的策略 14 2.2-3 氧化鋅的介紹 15 2.2-4 形狀及尺寸效應 16 2.2-5 氧化鋅之形狀及尺寸調控 18 2.3 壓電奈米發電機 23 2.3-1 壓電奈米發電機的工作原理 23 2.3-2 壓電奈米發電機的種類 24 2.3-3 壓電奈米發電機的材料發展歷史 26 2.3-4 影響壓電奈米發電機量測時輸出的摩擦電荷 28 第3章 材料與實驗方法 32 3.1 實驗材料 32 3.2 實驗分析儀器 34 3.3 實驗步驟 38 3.3-1 薄膜製備 38 3.3-2 氧化鋅合成 38 3.3-3 二維材料的沉積 39 3.4 實驗流程 39 3.5 實驗分析 41 第4章 結果與討論 42 4.1 對氧化鋅奈米晶體生長的影響因素 42 4.1-1 均勻薄膜結構的發展 42 4.1-2 氧化鋅奈米晶體生成條件對形貌之影響 45 4.1-3 氧化鋅結晶取向分析 50 4.2 複合薄膜壓電性質量測 55 4.2-1 PVDF-TrFE高分子板晶壓電性質量測 55 4.2-2 不同長寬比氧化鋅與高分子板晶相互極化作用 56 4.2-3 將二維材料沉積於複合薄膜上對薄膜壓電性質的影響 61 4.3 複合薄膜的壓電應用 68 4.3-1 複合薄膜的壓電奈米發電機輸出 68 4.3-2 二維材料添加對複合薄膜壓電奈米發電機輸出的影響 71 第5章 結論 74 第6章 參考文獻 75

    [1] V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects, Chemical reviews 116(7) (2016) 4260-4317.
    [2] P. Mehrotra, B. Chatterjee, S. Sen, EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing, Sensors 19(5) (2019) 1013.
    [3] L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics, Macromolecules 45(7) (2012) 2937-2954.
    [4] R. Dorey, Chapter 4-Microstructure–property relationships: How the microstructure of the film affects its properties, Ceramic Thick Films for MEMS and Microdevices 85-112.
    [5] N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoç, H. Lee, Y.-S. Kang, Processing, structure, properties, and applications of PZT thin films, Critical reviews in solid state and materials sciences 32(3-4) (2007) 111-202.
    [6] L. Zhu, Z.L. Wang, Recent progress in piezo‐phototronic effect enhanced solar cells, Advanced Functional Materials 29(41) (2019) 1808214.
    [7] A. Jbaily, R.W. Yeung, Piezoelectric devices for ocean energy: a brief survey, Journal of Ocean Engineering and Marine Energy 1(1) (2015) 101-118.
    [8] S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra, S.-G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, A review on piezoelectric energy harvesting: materials, methods, and circuits, Energy Harvesting and Systems 4(1) (2017) 3-39.
    [9] L. Li, J. Xu, J. Liu, F. Gao, Recent progress on piezoelectric energy harvesting: structures and materials, Advanced Composites and Hybrid Materials 1 (2018) 478-505.
    [10] E. Soergel, Piezoresponse force microscopy (PFM), Journal of Physics D: Applied Physics 44(46) (2011) 464003.
    [11] G. Park, H.H. Cudney, D.J. Inman, Feasibility of using impedance‐based damage assessment for pipeline structures, Earthquake engineering & structural dynamics 30(10) (2001) 1463-1474.
    [12] Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.-B. Xu, Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures, Acs Nano 11(5) (2017) 4507-4513.
    [13] C. Baur, Y. Zhou, J. Sipes, S. Priya, W. Voit, Organic, flexible, polymer composites for high-temperature piezoelectric applications, Energy Harvesting and Systems 1(3-4) (2014) 167-177.
    [14] E. Brunengo, G. Luciano, G. Canu, M. Canetti, L. Conzatti, M. Castellano, P. Stagnaro, Double-step moulding: An effective method to induce the formation of β-phase in PVDF, Polymer 193 (2020) 122345.
    [15] A. Ahmed, Y. Jia, H. Deb, M.F. Arain, H. Memon, K. Pasha, Y. Huang, Q. Fan, J. Shao, Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response, Journal of Materials Science: Materials in Electronics 33(7) (2022) 3965-3981.
    [16] T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers, Phase Transitions: A Multinational Journal 18(3-4) (1989) 143-211.
    [17] Y. Fujisaki, Poly (vinylidenefluoride-trifluoroethylene) P (VDF-TrFE)/semiconductor structure ferroelectric-gate FETs, Ferroelectric-Gate Field Effect Transistor Memories: Device Physics and Applications (2016) 157-183.
    [18] J. Kim, J.H. Lee, H. Ryu, J.H. Lee, U. Khan, H. Kim, S.S. Kwak, S.W. Kim, High‐performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P (VDF‐TrFE) with controlled crystallinity and dipole alignment, Advanced Functional Materials 27(22) (2017) 1700702.
    [19] G. Ico, A. Showalter, W. Bosze, S.C. Gott, B.S. Kim, M.P. Rao, N.V. Myung, J. Nam, Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting, Journal of Materials Chemistry A 4(6) (2016) 2293-2304.
    [20] V. Cauda, S. Stassi, K. Bejtka, G. Canavese, Nanoconfinement: an effective way to enhance PVDF piezoelectric properties, ACS applied materials & interfaces 5(13) (2013) 6430-6437.
    [21] Y. Li, W. Feng, L. Meng, K.M. Tse, Z. Li, L. Huang, Z. Su, S. Guo, Investigation on in-situ sprayed, annealed and corona poled PVDF-TrFE coatings for guided wave-based structural health monitoring: From crystallization to piezoelectricity, Materials & Design 199 (2021) 109415.
    [22] K. Shi, B. Chai, H. Zou, P. Shen, B. Sun, P. Jiang, Z. Shi, X. Huang, Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators, Nano Energy 80 (2021) 105515.
    [23] J. Li, C. Zhao, K. Xia, X. Liu, D. Li, J. Han, Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification, Applied Surface Science 463 (2019) 626-634.
    [24] P.J.P. Espitia, N.d.F.F. Soares, J.S.d.R. Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications, Food and bioprocess technology 5 (2012) 1447-1464.
    [25] S.-H. Shin, D.H. Park, J.-Y. Jung, M.H. Lee, J. Nah, Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature sensing, ACS applied materials & interfaces 9(11) (2017) 9233-9238.
    [26] C.-C. Hsiao, S.-Y. Yu, Rapid deposition process for zinc oxide film applications in pyroelectric devices, Smart materials and structures 21(10) (2012) 105012.
    [27] S.A. Kumar, S.M. Chen, Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications, Analytical Letters 41(2) (2008) 141-158.
    [28] V. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, A. Ogurcovs, Hydrothermal synthesis of ZnO nanostructures with controllable morphology change, CrystEngComm 22(8) (2020) 1346-1358.
    [29] R. Agrawal, H.D. Espinosa, Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation, Nano letters 11(2) (2011) 786-790.
    [30] M. Ghosh, D. Karmakar, S. Basu, S. Jha, D. Bhattacharyya, S. Gadkari, S. Gupta, Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures, Journal of Physics and Chemistry of Solids 75(4) (2014) 543-549.
    [31] R.S. Kammel, R.S. Sabry, Effects of the aspect ratio of ZnO nanorods on the performance of piezoelectric nanogenerators, Journal of Science: Advanced Materials and Devices 4(3) (2019) 420-424.
    [32] A. Sugunan, H.C. Warad, M. Boman, J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine, Journal of Sol-Gel Science and Technology 39 (2006) 49-56.
    [33] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO 2 gas–sensor applications: A review, Nano-Micro Letters 7 (2015) 97-120.
    [34] R. Parize, J. Garnier, O. Chaix-Pluchery, C. Verrier, E. Appert, V. Consonni, Effects of hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition, The Journal of Physical Chemistry C 120(9) (2016) 5242-5250.
    [35] Y. Lv, Z. Zhang, J. Yan, W. Zhao, C. Zhai, J. Liu, Growth mechanism and photoluminescence property of hydrothermal oriented ZnO nanostructures evolving from nanorods to nanoplates, Journal of Alloys and Compounds 718 (2017) 161-169.
    [36] Z.L. Wang, On Maxwell's displacement current for energy and sensors: the origin of nanogenerators, Materials Today 20(2) (2017) 74-82.
    [37] Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312(5771) (2006) 242-246.
    [38] Z.L. Wang, Towards self‐powered nanosystems: from nanogenerators to nanopiezotronics, Advanced Functional Materials 18(22) (2008) 3553-3567.
    [39] Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display, Nano letters 10(12) (2010) 5025-5031.
    [40] S. Xu, Y. Wei, J. Liu, R. Yang, Z.L. Wang, Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes, Nano letters 8(11) (2008) 4027-4032.
    [41] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy 55 (2019) 288-304.
    [42] J. Chun, N.-R. Kang, J.-Y. Kim, M.-S. Noh, C.-Y. Kang, D. Choi, S.-W. Kim, Z.L. Wang, J.M. Baik, Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor, Nano Energy 11 (2015) 1-10.
    [43] K.-B. Kim, W. Jang, J.Y. Cho, S.B. Woo, D.H. Jeon, J.H. Ahn, S. Do Hong, H.Y. Koo, T.H. Sung, Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride nanosheet (BNNS), Nano Energy 54 (2018) 91-98.
    [44] C. Dagdeviren, B.D. Yang, Y. Su, P.L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm, Proceedings of the National Academy of Sciences 111(5) (2014) 1927-1932.
    [45] G.T. Hwang, H. Park, J.H. Lee, S. Oh, K.I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, Self‐powered cardiac pacemaker enabled by flexible single crystalline PMN‐PT piezoelectric energy harvester, Advanced materials 26(28) (2014) 4880-4887.
    [46] K. Batra, N. Sinha, S. Goel, H. Yadav, A.J. Joseph, B. Kumar, Enhanced dielectric, ferroelectric and piezoelectric performance of Nd-ZnO nanorods and their application in flexible piezoelectric nanogenerator, Journal of Alloys and Compounds 767 (2018) 1003-1011.
    [47] M. Ghosh, M.G. Rao, Growth mechanism of ZnO nanostructures for ultra-high piezoelectric d 33 coefficient, Materials Express 3(4) (2013) 319-327.
    [48] A. Šutka, P.C. Sherrell, N.A. Shepelin, L. Lapčinskis, K. Mālnieks, A.V. Ellis, Measuring piezoelectric output—fact or friction?, Advanced Materials 32(32) (2020) 2002979.

    無法下載圖示 校內:2028-08-23公開
    校外:2028-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE