| 研究生: |
陳緒瑋 Chen, Xu-Wei |
|---|---|
| 論文名稱: |
共平面式不對稱電溼潤電極最佳化設計及其應用於冷凝熱傳增益之實驗探討 Enhancement of Condensation Heat Transfer by using Optimized Asymmetric Coplanar EWOD Electrode Design |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 電溼潤 、冷凝熱傳 、不對稱共平面式電極 、微機電製程 |
| 外文關鍵詞: | Electrowetting, Condensation Heat Transfer, Asymmetric Coplanar Electrode, MEMS Fabrication |
| 相關次數: | 點閱:150 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在於應用電溼潤(electrowetting on dielectrics, EWOD)效應於冷凝熱傳效率增益,研究之目的主要利用共平面式(coplanar)不對稱電極設計理論及微機電製程加工技術,設計並製作出能夠往單一方向驅動液滴的最大致動力電溼潤表面,並考量冷凝液滴的生成行為,針對不對稱電極之尺寸做最佳化設計,以提升電溼潤冷凝板之熱傳效率。共平面式單一方向驅動液滴的之電溼潤表面主要的驅動機制為利用兩不對稱電極之間,當施與方波訊號時所產生的不對稱電溼潤現象,使液滴在開放平面上能夠持續往單一方向移動,達到排除液滴的效果。本研究將先探討不同驅動電極設計所產生的液滴驅動效果,配合冷凝熱傳實驗系統架設,比較未通入訊號前之均質表面與通入訊號後電溼潤表面之冷凝熱傳效率增益,並量化各種電溼潤冷凝表面設計之之熱傳效率。實驗結果發現此電溼潤冷凝表面比均質冷凝表面的熱通量高出15%,顯示出此電溼潤致動表面對於冷凝熱傳熱通量有提升的效果。
The objective of this study is applying electrowetting on dielectrics (EWOD) phenomena on condensation heat transfer. By using the asymmetric coplanar EWOD electrode design, one can drive condensation droplets in one direction. The main driving mechanism is to generate the asymmetric EWOD driving forces which cause droplets continuously move on a surface. In this study, theoretical analysis is first used to optimize EWOD electrode design. The maximum EWOD driving force happens if the width of extruded electrode over the radius of droplet is 1.488. In the meantime, experimental results support the current optimal design which shows it can generate the highest EWOD driving force than the other designs.
【1】 方聰賢,“固體表面濕潤性與滴式冷凝之研究”,國立成功大學碩士論文,1996.
【2】 吳增昕,“表面改質技術應用於梯度表面之冷凝熱傳實驗”, 國立成功大學碩士論文,2007.
【3】 陳彥伯,“正丁醇蒸氣在帶高電量SiO2及TiO2奈米微粒上之非均勻相核凝現象”,國立成功大學碩士論文,2010.
【4】 楊承翰,“電濕潤技術應用於表面冷凝熱傳之實驗探討”, 國立成功大學碩士論文,2012.
【5】 J. H. Chang and J. J. Pak, “Effect of Contact Angle Hysteresis on Electrowetting Threshold for Droplet Transport”, Journal of Adhesion Science and Technology, 26, 2105–2111, 2012.
【6】 S. K. Cho, H. Moon, and C. J. Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits”, Journal of Microelectromechanical Systems, Vol. 12, No. 1, February 2003.
【7】 W. G. Courtney, “Recent advances in condensation and evaporation”, ARS Journal,June,p751. 1961.
【8】 S. Daniel, M. K. Chaudhury, J. C. Chen, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface”,Science,291,633-636, 2001.
【9】 S. Daniel and M. K. Chaudhury, “Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration”, Langmuir, 18, 3404-3407, 2002.
【10】 H. B. Eral & D. J. C. M. ’t Mannetje & J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications”, Colloid Polym Sci,2012.
【11】 S. K. Fan, H. Yang, T. T. Wang and W. Hsu, “Asymmetric electrowetting—moving droplets by a square wave”, Lab on a Chip, 2007.
【12】 J. Lee and C. J. Kim, “Surface-Tension-Driven Microactuation Based on Continuous Electrowetting”, Journal of microelectromechanical systems, VOL. 9, NO. 2, JUNE 2000.
【13】 J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling”, Sensors and Actuators A 95 259-268, 2002.
【14】 M. G. Lippmann, “Relation between electrical phenomena and capillaries”, Ann. Chim. Phys. 1875.
【15】 D. J. C. M. ‘t Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes”, APPLIED PHYSICS LETTERS 98, 014102, 2011.
【16】 M. G. Pollack, A. D. Shenderov and R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics”, Lab Chip, 2, 96-101, 2002.
【17】 F. Saeki, J. Baum, H. Moon, J. Y. Yoon, C. J. Kim and R. L. Garrell, “Electrowetting on Dielectrics (EWOD): Reducing Voltage Requirements for Microfluidics”, Polym. Mater. Sci. Eng. 85, 2001.
【18】 J. S. Sheu, J. R. Maa, and J. L. Katz, “Adsorption and Nucleation on Smooth Surfaces”, Journal of Statistical Physics, Vol. 52, Nos. 5/6, 1988.
【19】 A. Torkkeli, “Droplet microfluidics on a planar surface”, VTT Publications 504. 194p. +app. 19p. Espoo 2003.
【20】 T. T. Wang, P. W. Huang, and S. K. Fan, “Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting”, IEEE Conf. MEMS, 2006.
【21】 M. Washizu, “Electrostatic Actuation of Liquid Droplets for Microreactor Applications”, IEEE Transactions on Industry Applications, Vol. 34, No. 4, July/August 1998.
【22】 U. C. Yi and C. J. Kim, “EWOD Actuation with Electrode-free Cover Plate”, The 13th International Conference on Soild-State Sensors , 2005.