簡易檢索 / 詳目顯示

研究生: 劉仰哲
Liu, Yang-Che
論文名稱: 以Sr、Cu改質TiO2光觸媒處理廚餘堆肥場中 臭味氣體三甲基胺之研究
The Performance enhancement by Adding Copper or Strontium with TiO2 on Photocatalytic Oxidation of Trimethylamine from the Food Waste Composting Plants
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 139
中文關鍵詞: 改質光觸媒催化二氧化鈦三甲基胺臭味廚餘堆肥場
外文關鍵詞: Food waste composting plant, Odors, Trimethylamine, Titanium dioxide, Strontium, Copper, Doping metal photocatlytic degradation
相關次數: 點閱:197下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廚餘堆肥場最主要之問題為臭味之去除,一般傳統的臭味去除的方法有吸收劑吸附法、化學洗滌法、焚化/觸媒焚化法、生物濾床法等。光催化為目前處理揮發性有機物的技術中較新穎的處理技術,具有吸引、非選擇性及室溫下可進行光催化分解有機物等特性,為具發展潛力的最終處理程序。
    本研究主要目的在利用自製TiO2光觸媒處理廚餘堆肥場中臭味氣體三甲基胺,探討反應系統中,滯留時間、氧氣含量、溫度變化及反應物初始濃度對臭味氣體三甲基胺反應之去除率影響,並添加Sr、Cu對自製TiO2光觸媒進行改質,探討改質TiO2光觸媒對三甲基胺反應之去除率影響。並藉由各種輔助實驗中,如SEM、XRD等多項精密儀器來觀察研究光觸媒之各項物化性質。本實驗採用連續式環狀薄膜反應器,而自製TiO2光觸媒及改質TiO2光觸媒是利用溶膠凝膠法製備而成,實驗研究結果證實本研究所採用製備之光觸媒方式,可有效處理臭味氣體三甲基胺。
    實驗結果顯示,由XRD分析得知,鍛燒溫度為773 K時自製TiO2光觸媒晶相大部份為anatase,另有一些rutile之晶相產生。
    改質後之TiO2光觸媒處理三甲基胺之轉化率分析中可發現,在停留時間10 sec時,Sr/Ti=0.1%的改質TiO2光觸媒表現最佳,其轉化率為57%,而自製純TiO2光觸媒,轉化率為43%。在波長480~580 nm的可見光照射12小時後,包含三甲基胺本身可能受到的光解反應, Sr/Ti=0.1 mole%的改質TiO2光觸媒對臭味氣體三甲基胺有達到最佳的轉化率約有57%。

    The important subject of food waste composting plant is the odor degradation. The traditional techniques are adsorption, chemical scrubbing, incineration/ catalytic incineration and bio-filter. Photocatalytic degradation has drawn considerable academic interest as a very attractive, non-selective room-temperature process for the degradation of organic pollutants.
    We will synthesize photocatalyst (TiO2, Sr/ TiO2 and Cu/ TiO2) to use for photocatalytic degradation of C3H9N produced from. It can be classified into three major parts: (1) the effect of synthesizing photocatalyst by prepared different methods. (2) The effects of operating factors such as light intensiy, VOC concentration, space velocity, O2 concentration and water vapor, on the performance of the catalyst will be investigated. We will modify photocatalyst by adding some metal substances. Some instruments such as SEM、XRD、ESCA will be used to exam the catalysts.
    This investigation used a tube deposited TiO2 thin flim inside. All photocatalysts was made by the sol-gel method. The experiment result indicate that the TiO2 with sol-gel method is useful for photocatalytic degradation of C3H9N.
    In the XRD pattern, the crystalline phases of the TiO2 photocatalyst prepared by calcining at 773 K for 3 hours are primarily composed of anatase and minor amount of rutile.
    When retention time is controlled at 10 seconds, the best trimethylamine photodegration performance is the sample of Sr/Ti=0.1 mole%. The performance is 57%. The following are Cu/Ti=0.0001 mole%. The performance is 49%.
    The irradiation intensity of visible light is 480~580 nm. The results show that with illumination for 12 h, the photodegradation efficiencies of the Sr/Ti=0.1% TiO2 by the sol-gel method is 57%.

    致謝 i 摘要 A Abstract B 目錄 I 表目錄 IV 圖目錄 V 第一章 前言 1 第二章 文獻回顧 3 2-1 臭味的定義及相關研究 3 2-1.1 臭味之定義 3 2-1.2 廚餘堆肥場臭味成分之相關研究 5 2-2 三甲基胺之特性與處理 6 2-2.1 三甲基胺之控制技術 6 2-2.2 三甲基胺之特性與處理 8 2-3 光催化原理 9 2-4 二氧化鈦的基本特性 14 2-5 二氧化鈦的改質 16 2-5.1 添加金屬原子 17 2-5.2 添加金屬離子 17 2-5.3 加入其它種半導體 20 2-6 光觸媒的製備 21 2-7 二氧化鈦光觸媒塗佈方法 25 2-7.1 浸漬塗佈方法 25 2-7.2 旋轉塗佈法 26 2-8 自製光觸媒分解三甲基胺反應動力之探討 28 2-8.1 柱流式反應器基礎理論 28 2-8.2 微分型反應器 30 2-8.3 觸媒異相反應模式 31 第三章 研究方法與實驗設備 35 3-1 研究方法 35 3-1.1 實驗規劃 35 3-1.2 實驗步驟與方法 36 3-2 預備實驗 37 3-2.1 光觸媒之製備 37 3-2.2 玻璃基材的清洗與秤重 39 3-2.3 光觸媒膜之製備 39 3-2.4 鍛燒後的光觸媒膜之定量 42 3-3 實驗設備 42 3-3.1 實驗系統裝置 42 3-3.2 試藥與氣體 48 3.4 預備實驗 49 3-4.1 檢量線製作 49 3-4.2 光催化之背景實驗 50 第四章 結果與討論 52 4-1 廚餘堆肥場實場訪查與採樣 52 4-1.1 採樣地點之描述 52 4-1.2 廚餘堆肥場訪查項目 54 4-1.3 廚餘堆肥場臭味檢驗結果 56 4-2 自製TiO2之特性分析 58 4-2.1 熱重分析(Thermal Gravity Analyst,TGA) 58 4-2.2 X-射線繞射分析(X-ray Diffraction,XRD) 60 4-2.3 UV-Visible 光譜分析 63 4-2.4 FTIR和TG-IR分析 65 4-2.5 在不同停留時間下自製TiO2光觸媒處理三甲基胺之轉化率分析 68 4-2.6 在不同溫度下自製TiO2對於三甲基胺之轉化率分析 70 4-2.7 在不同氧氣濃度自製TiO2下對於三甲基胺之轉化率分析 72 4-2.8 自製TiO2在不同三甲基胺濃度下對於三甲基胺之去除效率 74 4-2.9 不同停留時間自製TiO2對於氨之去除效率 76 4-2.10 以773 K鍛燒3小時後之光觸媒處理三甲基胺之產物分析 77 4-2.11 以773 K鍛燒3小時後之光觸媒TEM分析 78 4-2.12 773 K鍛燒3小時經反應前之TiO2光觸媒SEM及反應後SEM、Mapping、EDS分析 79 4-3 自製Sr/TiO2光觸媒之特性分析 83 4-3.1 熱重分析 83 4-3.2 X-射線繞射分析(X-ray Diffraction,XRD) 85 4-3.3 UV-Visible 光譜分析 88 4-3.4 以773 K鍛燒3小時後不同Sr/Ti比例光觸媒處理三甲基胺的轉化率分析 90 4-3.5 以773 K鍛燒3小時後之Sr/TiO2光觸媒處理三甲基胺的產物分析 92 4-3.6 BET比表面積及孔洞分佈分析 93 4-3.7 以773 K鍛燒3小時後摻雜Sr的TiO2光觸媒反應後之SEM、Mapping、EDS分析 95 4-3.8 Sr/TiO2光觸媒之XPS分析 99 4-4 自製Cu/TiO2光觸媒之特性分析 102 4-4.1 熱重分析 102 4-4.2 X-射線繞射分析(X-ray Diffraction,XRD) 104 4-4.3 UV-Visible 光譜分析 107 4-4.4 以773 K鍛燒3小時後不同Cu/Ti比例光觸媒處理三甲基胺的轉化率分析 109 4-4.5 以773 K鍛燒3小時後之Cu/TiO2光觸媒處理三甲基胺的產物分析 112 4-4.6 BET比表面積及孔洞分佈分析 113 4-4.7 773 K鍛燒3小時摻雜Cu的TiO2光觸媒反應後之SEM、Mapping、EDS分析 115 4-4.8 Cu/TiO2光觸媒之XPS分析 119 4-5 自製TiO2光觸媒在可見光照射下處理三甲基胺的轉化率分析 122 4-6 自製TiO2光觸媒之動力分析 124 第五章 結論與建議 128 5-1 結論 128 5-2 建議 131 參考文獻 132 自述 139

    Akron, O. H., “Odor Thresholds for Chemicals with Established Occupational Health Standards”, American Industrial Hygiene Assco., 1989.
    Alberici, R. M., Jardim, W. F., “Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide”, Applied Catalysis B:Environmenta, 1997, 14, 55-68.
    Allen, M. R., Braithwaite, A., Hills, C. C., “Trace Organic Compounds in Landfill Gas at Seven U.K. Waste Disposal Sites”, Environmental Science & Technology, 1997, 31, 1054 -1,061.
    Anpo, M., Shima, T., Kodama, S., Kubokawa, Y., ”Photocatalytic hydrogenation of CH3CCH with H2O on Small-particle TiO2: size quantization effects and reaction intermediates”, Journal of Physical Chemistry, 1987, 91, 4305-4310.
    Bandara, J., Mielczarski, J. A., Lopez, A., Kiwi, J., “Sensitized degradation of chlorophenols on iron oxides induced by visible light Comparison with titanium oxide”, Applied Catalysis B: Environmental, 2001 , 34, 321-333.
    Belver, C., Lopez-Munoz, M. J., Coronado, J. M., Soria, J., “Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors”, Applied Catalysis B: Environmental, 2003, 46, 497-509.
    Bessekhound, Y., Robert, D., Weber, J. V., ”Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant”, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 569-580.

    Billet, R., “Packed Towers in Processing and Environmental Technology”, 1995.
    Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., Casado, J., “Aniline mineralization by AOP: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processesz”, Applied catalysis B: Environmental, 1998, 16, 3142.
    Cermenati, L., Dondi, D., Fagnoni, M., Albini, A., “Titanium dioxide photocatalysis of adamantine”, Tetrahedron, 2003, 59, 6409-6414.
    Chen, S., Chen, L., Gao, S., Cao, G., “The preparation of coupled WO3/TiO2 photocatalyst by ball milling”, Powder Technology, 2005, 160, 198 – 202.
    Choi, W., Termin, A., Hoffmann, M.R., “The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”, Journal of Physical Chemistry,1994, 98, 13669-13679.
    Dawson, A., Kamat, P. V., “Semiconductor-Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles”, Journal Physical Chemistry B, 2001, 105, 960-966.
    Dhage, S.R., Pasricha, R., Ravi, V., “Synthesis of ultrafine TiO2 by citrate gel method”, Materials Research Bulletin, 2003, 38, 1623–1628.
    Harizanov, O., Ivanova, T., Harizanova, A., “Study of sol-gel TiO2 and TiO2-MnO obtained from a peptized solution”, Materials Letters, 2001, 49, 165-171.
    Hirano, T., Kurosawa, H., Nakamura, K., and Amano, Y., “Simultaneous Removal of Hydrogen Sulfide and Trimethylamine by a Bacterial Deodorant”, Journal of Fermentation and bioengineering, 1996, 81, 337-342.
    Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chemical Reviews, 1995, 95, 69-96.
    Hossain, M. Z., Machida, S., Yamashita, Y., Mukai, K., and Yoshinobu, J., “Purely Site-Specific Chemisorption and Conformation of Trimethylamine on Si(100)c(4×2)”, JACS COMMUNICATIONS, 2003,74, 1054-1060.
    Huang, P. J., Chang, H., Yeh, C. T., Tsai, C. W., “Phase transformation of TiO2 monitored by Thermo-Raman spectroscopy with TGA/DTA”, Thermochimica Acta, 1997, 297, 85-92.
    Hung, C.-H., Marinas, Benito-J., “Role of water in the photocatalytic degradation of trichoroethylene vapor on TiO2 films”, Environmental Science and Technology, 1997, 31, 5, 1440-1445.
    Jacoby, A.W.; Blake, D.M., Fennell, J.A., Boulter, J/E. and Vargo, L.M., “Hetrogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air”, The 88th Air&Water Management Association, 1996, 46, 891-898.
    Jin, R., Gao, W., Chen, J., Zeng, H., Zhang, F.,Liu, Z., Guan, N., “Photocatalytic reduction of nitrate ion in drinking water by using metal-loaded MgTiO3-TiO2 composite semiconductor catalyst”, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 585–590.
    Kim, H., Nochetto, C., and McConnell, L. L., “Gas-Phase Analysis of Trimethylamine, Propionic and Butyric Acids and Sulfur Compounds Using Solid-Phase Microextraction”, Analytical Chemistry, 2002, 74, 1054-1060.
    Keller, V., Bernhardt, P., Garin, F., “Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts”, Journal of Catalysis, 2003, 215, 129-138.
    Larbot, A., Nabias, G., Cot, L., “Preparation and characterization of colloidal solution derived crystallized titania powder”, Journal of the European ceramic society, 1998, 18, 2175-2181.
    Linsebigler, A. L., Lu, G. J., Yates, T.J., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews, 1995, 95, 735-785.
    Machkova, M., Brashkova, N., Ivanov, P., Carda, J.B., Kozhukharov, V.,” Surface behavior of Sr-doped lanthanide perovskites”, Applied Surface Science, 1997, 119, 127-136.

    Okada, M., Yamada, Y., Jin, P., Tazawa, M., Yoshimura, K., “Fabrication of multifunctional coating which combines low-eproperty and visible-light-responsive photocatalytic activity”, Thin Solid Films, 2003, 442, 217-221.
    Ollis, D. F.,” Contaminant degradation in water Heterogeneous photocatalysis degrades halogenated hydrocarbon contaminants”, Environmental Science and Technology, 1985, 19, 6, 480-484.
    Ono, Y., Fujii, Y., Wakita, H., kimnra, K., Inui, T., “Catalytic combustion of odors in domestic space on ion-exchanged zeolites”, Applied Catalyst B: Environmental, 1998, 16, 227-233.
    Pawlak, D. A., Ito, M., Oku, M., Shimamura, K., Fukuda, T.,” Interpretation of XPS O (1s) in Mixed Oxides Proved on Mixed Perovskite Crystals”, Journal Physical Chemistry B, 2002, 106, 504-507.
    Shah, S. I. , Li , W., Huang , C. P., Jung , O. , Ni, C., “Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles”, Proceedings of National Academy of Sciences, 2002, 99, 6482-6486.
    Sivakumar, S. P., Krishna, P., Mukundan, P., Warrier, G. K., “Sol-gel synthesis of nanosized anatase from titanyl sulfate”, Materials Letters, 2002, 57, 330-335.
    Slamet, Nasution, H. W., Purnama , E., Kosela , S., Gunlazuardi, J., “Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method”, Catalysis Communications, 2005, 6, 313–319.
    Sonawane, R. S., Hegde, S. G., Dongare, M. K., “Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating”, Materials Chemistry and Physics, 2002, 77, 744-750.
    Takahashi, M., Tsukigi, K., Dorjpalam, E., Tokuda, Y., Yoko, T., “Effective Photogeneration in TiO2/VO2/TiO2 Multilayer Film Electrodes Prepared by a Sputtering Method”, Journal Physical Chemistry B, 2003, 107, 13455-13458.
    Reddy, K. M., Reddy, C. V. G., Manorama, S. V., “Preparation, Characterization, and Spectral Studies on Nanocrystalline Anatase TiO2”, Journal of Solid State Chemistry, 2001, 158, 180-186.
    Watanabe, N., Yamashita, H., Miyadera, H., Shigern, “Removal of unpleasant oder gases using an Ag-Mn”, Applied Catalysis B: Envirometal, 1996, 8, 405-415.
    Wu, J. C. S., Cheng, Y. T., “In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation”, Journal of Catalysis,2006, 237, 393–404.
    Yang, S., Huang, Y., Huang, C., Zhao, X., “Enhanced Energy Conversion Efficiency of the Sr2+-Modified Nanoporous TiO2 Electrode Sensitized with a Ruthenium Complex”, Chemistry of Materials, 2002, 14, 1500-1504.
    Yoneyama, H., Haga, S., “Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay”, Journal of Physical Chemistry, 1981, 93, 4833-4837.
    Yu, J. C., Lin, J., Fwok, W. M., “Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone”, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 111, 199-230.

    Zảrate, R.A., Fuenzalida, V.M.,” Titanium monoxide ultra-thin coatings evaporated onto polycrystalline copper films”, Vacuum, 2004, 76, 13–17.
    Zhang, W., Li, Y., Zhua, S., Wang, F.,” Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering”, Catalysis Today, 2004, 93–95, 589–594.
    Zou, S. C., Lee, S. C., Chan, C. Y., Ho, K. F., Wang, X. M., Chan, L. Y., Zhang, Z. X., “Characterization of ambient Volatile organic compounds at a landfill site in Guangzhou, South China”, Chemosphere, 2003, 51, 1015-1022.
    中華民國台灣地區環境保護統計年報,民國八十一年~八十八年。
    勞工安全衛生研究所,http://www.iosh.gov.tw/intro/show/show7.htm
    環保署譯,臭味防治技術參考手冊,民國78年。
    毛義方,廚餘堆肥臭味中代表性成分檢驗及官能測定關聯性研究,九十
    三年度環保署/國科會空污防制科研合作計畫期中報告,民國93年8月。
    董俊興,經摻雜之二氧化鈦觸媒膜光分解性質之研究,國立中央大學化學工程學系碩士論文,2001。
    吳異琦,張仁瑞, 除臭吸附劑之開發,國立中正大學化工研究所碩士論文,2004。
    馬志明,顧洋,以紫外光/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研究,國立台灣科技大學化學工程技術研究所碩士論文,1998。
    林薒毓,謝永旭,以CVD法製備二氧化鈦光觸媒去除甲苯之研究,國立中興大學環境工程系碩士論文,2001。
    蔡金津,「奈米顆粒及薄膜之溶膠-凝膠技術」,化工資訊,十一月,2001,
    16-21。
    陳慧英,黃定加,朱秦億,「溶膠凝膠法在薄膜製備上的應用」,化工技
    術,第七卷,第十一期,1999,152-167。
    高濂,鄭珊,張青紅,陳憲偉,奈米光觸媒,五南,2004。
    連振富,林榮良,三甲胺及三乙胺在TiO2粉末上的吸附與光化學反應研究,國立成功大學環境工程系碩士論文,2002。

    下載圖示 校內:立即公開
    校外:2006-07-05公開
    QR CODE