| 研究生: |
李尚胤 Lee, Shang-Yin |
|---|---|
| 論文名稱: |
脈聲儀定性校正與時頻轉換之應用 Qualitative Identification of Sonocardiography System and Applications of Fourier Sine Spectrum and Spectrogram |
| 指導教授: |
鄭育能
Jeng, Yih-Nen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 傅立葉正弦時頻圖 、傅立葉正弦頻譜 、頻率響應 |
| 外文關鍵詞: | Fourier sine spectrum, frequency response, Fourier sine spectrogram |
| 相關次數: | 點閱:95 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文對尤芳忞教授所發展的脈聲儀系統之麥克風作定性校正,以證
明在0.5-10Hz 之間,可以產生有效的頻率響應。實驗所用的部份包括訊號產生器、小型揚聲器、小型麥克風、音效卡和個人電腦等。電腦收集到訊號後,應用傅立葉正弦頻譜和傅立葉正弦時頻圖產生器以檢視其頻率響應。該產生器包括下列過程:使用疊代式高斯平滑法移除非週期和極低頻部份,再用單調式三次方分段內插法,定出週期性部份數據靠近兩端的零點,經內插重新分佈點及奇函數轉換,以快速傅立葉級數轉換法,求取傅立葉正弦頻譜。隨後對頻譜取有限的帶狀頻帶後,對其做快速逆傅立葉轉換,求得傅立葉正弦時頻之實數部份,再應用希爾伯特轉換求振幅並畫出時頻圖。從實驗結果得知,只要在足夠小的空間裡,揚聲器有足夠能量推動其發聲膜片,以產生壓力波,麥克風就可以量測到低頻訊號。因而證明脈聲儀系統可以量得到人體手腕的脈博訊號。本文並配合王唯工博士等人所發展的人體動脈之壓力波共振理論,討論動脈訊號,以分析在剖腹產手術過程量取到的ABP 和ECG 訊號。時頻圖可以顯示代表身體各器官之諧波,隨著時間產生的振盪與變化,也可觀測出手術中各個不同的施行點。
The frequency response of the microphone of the Prof. F. M. Yu’s sonocardiography system is qualitatively proven to cover the 0.5 to 10 Hz zone. Experimental equipments include a function generator, small speaker,small microphone, audio board, and personal computer etc.. After the computer receives a signal from the microphone, we apply the Fourier sine spectrum/spectrogram generator to show the frequency response. The transformation involves the following steps. The non-sinusoidal part and extremely low-frequency part are removed by applying the iterative Gaussian smoothing method. In the remaining sinusoidal part, zero points around the two ends are identified by a searching procedure and interpolation. After dropping segments beyond the two zero ends, the corresponding Fourier sine spectrum is obtained by performing an odd function mapping. The time-frequency transform then imposes finite bandwidth Gaussian window upon the Fourier sine spectrum centered at a given frequency. The inverse Fourier transform of the band-pass limited spectrum gives the real part of the resulting spectrogram. The experimental results show that, in a small space, as long as the speaker has enough energy to push that small air cell, the microphone will receive low-frequency signal. According to the Wang’s frequency resonance theory of arterial and vascular system .We apply it to invest the pulse signal of a caesarean section including ABP and ECG signals.The corresponding spectrums and spectrograms show that every corresponding harmonic mode has amplitude and frequency variations with respect to time. We also compare the different operation point to explain its meaning with the spectrograms.
1. W. K. Wang, Y. Y. Lo, Y. Chiang, T. L. Hsu, and Y. Y. Wang Lin,“Resonance of Organs with the Heart,” In Biomedical Engineering – An International Symposium, ed. Young, W. J. Hemisphere, Washington, DC.USA, pp.259-268, 1989.
2. YY Wang, SL Chang, YE Wu, TL Hsu, and WK Wang, “Resonance. The missing phenomenon in hemodynamics,” Circ. Res. 1991;69;246-249
3. M. Y. Jan, H. Hsiu, T. L. Hsu, W. K. Wang, and Y. Y. Wang, “The Physical Conditions of Different Organs Are Reflected Specifically in the Pressure Pulse Spectrum of the Peripheral Arterial,” Cardiovascular Engineering: An Int. J., vol. 3. no.1, pp.21-29, 2003.
4. S. T. Young, W. K. Wang, L. S. Chang, and T. S. Kuo, “Specific Frequency Properties of the Renal and the Superior Mesenteric Arterial Beds in Rats,” Cardiovas Res. Vol. 23, pp.265-467, 1989.
5. T. L. Hsu, P. T. Chao, H. Hsiu, W. K. Wang, S. P. Li, and Y. Y. Lin Wang,“Organ-Specific Ligation-Induced Changes in Harmonic Components of the Pulse Spectrum and Regional Vasoconstrictor Selectivity in Wistar Rats,” Experimental Physiology, vol. 91, no.1, pp.163-170, 2006.
6. F. M. Yu and S. C. Wang, “Design of a Sonocardiography System and Its Application in the Diagnostic of the Cardiovascular Disease,”Proceedings of 2006 TSB conference, Taiwan, Paper No.TSB2006-O-205, pp.16, Dec. 2006.
7. Y. N. Jeng, “Time-Frequency Plot of a Low Speed Turbulent Flow via a New Time Frequency Transformation,” Proc. 16th Combustion Conf.,54 Paper No.9001, Taiwan, April 2006.
8. Y. N. Jeng and Y. C. Cheng, “A Time-Series Data Analyzing System Using a New Time–Frequency Transform”, Proc. 2006 International Conference on Innovative Computing, Information and Control, vol. 1,Paper No. 0190, pp.525-528, Sept. 30, 2006.
9. Y. C. Kuo, T. Y. Chiu, M. Y. Jan, J. G. Bau, S. P. Li, W. K. Wang, and Y. Y.Wang, “Losing Harmonic Stability of Arterial Pulse in Terminally Ill Patients, Clinical Methods and Pharmachology,” Blood Pressure Monitoring, vol. 9. no. 5, pp.255-258, Oct. 2004.
10. Y. C. Su, K. F. Huang, Y. H. Chang, T. C. Li, W. S. Huang, and J. G. Lin,“The Effect of Fasting on the Pulse Spectrum,” American J. of Chinese of Medicine, Summer-Fall, pp.1-5, 2000.
11. M. Farge, “Wavelet Transforms and Their Applications to Turbulence,”Annu. Rev. Fluid Mech., Vol.24, pp.395- 457, 1992.
12. R. Carmona, W. L. Hwang, and B. Torresani, Practical Time-Frequency Analysis, Gabor and Wavelet Transforms with in Implementation in S,Academic Press, N. Y. , 1998.
13. Time-Frequnecy Signal Analysis, Methods and Applic-tions, ed. by B.Boashash, Longman Cheshire, Australia, 1992.
14. Y. N. Jeng, P. G. Huang, and H. Chen, “Wave Decomposition in Physical Space Using Iterative Moving Least Squares Methods,” Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung,
Paper No. CFD11-0107, Aug. 2004.
15. Y. N. Jeng, Y. C. Cheng, and T. M. Yang, “Wave Decomposition Across Discontinuity Using Iterative Moving Least Squares Methods,”55 Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, Paper No. CFD11-0110, Aug. 2004.
16. Y. N. Jeng and P. G. Huang, “Evaluation of Derivatives from Composite Wave via Iterative Filter and A Numerical Method of Solving Partial Differential Equations,” Proceedings of 11-th National Computational
Fluid Dynamics Conference, Tai-Tung, Paper No. CFD11-0111, Aug.2004.
17. Y. N. Jeng and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals,”10-th National Computational Fluid Dynamics Conference of Taiwan,Hua-Lien, 2003, Paper No.A-9, also Transactions of the Aeronautical and Astronautic Society of the Republic of China in press, Sept. 2004.
18. 楊宗明“應用離散移動式最小平方法誤差法於疊代式高/低通濾波器“ 國立成功大學航空太空工程學系碩士論文,July 2004。
19. H.T.Huynh,“Accurate Monotone Cubic Interpola- tion,” SIAM J. Number.Anal., vol.30, no.1, pp57-100, Feb.1993.
20. Y. N. Jeng and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals,”Transactions of the Aeronautical and Astronautical Society of the Republic of China, vol.36, no.3, pp.207-214, 2004 .
21. Y. N. Jeng and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals,”Trans. Aero. Astro. So., R. O. C., vol.36, no.3, pp.207-214, 2004.
22. Y. N. Jeng and Y. C. Cheng, “A New Short Time Fourier Transform for a Time Series Data String”, to appear in Trans. Aero. Astro. Soc. R. O. C.,2006.
23. Y. N. Jeng, C.T. Chen, and Y. C. Cheng, “A New and Effective Tool to Look into Details of a Turbulent Data String,” Proc. 12th National Computational Fluid Dyna-mics Conference, Kaohsiung Taiwan, Paper No. CFD12-2501, Aug. 2005.
24. Y. N. Jeng and Y. C. Cheng, “The New Spectrogram Evaluated by Enhanced Continuous Wavelet and Short Time Fourier Transforms via Windowing Spectrums,” Proc. 18th IPPR conference on Computer Vision,Graphics and Image Processing (CVGIP2005), Taipei R. O. C,pp.378-383, Aug. 2005.
25. Y.N. Jeng, C. T. Chen, and Y. C. Cheng, “Studies of Some Detailed Phenomena of a Low Speed Turbulent Flow over a Bluff Body,” Proc.2005 AASRC/CCAS Joint Conf., Kaohsiung, Taiwan, Paper No. H-47,Dec. 2005.
26. Y.N. Jeng, C. T. Chen, and Y. C. Cheng, “Some Detailed Information of a Low Speed Turbulent Flow over a Bluff Body Evaluated by New Time-Frequency Analysis,” AIAA Paper No.2006-3340, San Francisco June, 2006.
27. J. S.Bendat and A. G.Piersol, Random Data Analysis and Measurement Procedures,3rd ed., John Wiley & Sons, New York, 2000.
28. S. L .Hahn, Hilbert Transforms in Signal Processing,Artech House Inc.Boston, 1996.
29. Y. N. Jeng, “Modified Hilbert Transform for Non-stationary Data of Finite Range,” The 7-th National Computational Fluid Dynamics Conference, P-15 to P-22, Aug. 2000.
30. 陳敬修,“利用非侵入式Plethysmography 信號評估手術病患舒張壓變化趨勢之研究“,國立中山大學機械與機電工程系碩士論文,June 2004。
31. 蔡昇育,“血管橈度與脈搏波速間關係之實驗模擬與研究“ ,國立成功大學航空太空工程學系碩士論文,July 2007。
32.http://www.womenclinic.com.tw/book/03-3.htm 剖腹生產
33. http://www.obsgyn.net/info/general_obs_cs.htm 婦產科資詢服務網
34. http://www.sinlau.org.tw/t099.htm 淺談麻醉
35. http://www.bioice.net/~92230023/new_page_34.htm 交感神經VS副交感神經
36. 蔡佳霖,“脈搏訊號及心電圖之時頻分析“ 國立成功大學航空太空工程學系碩士論文,June 2007。
37. http://www.anesthesia.net.tw/dokuwiki/doku.php?id=textbook:chinese:howto:20 麻醉WIKI