簡易檢索 / 詳目顯示

研究生: 張智涵
Chang, Chi-Han
論文名稱: π相位移長週期SOI波導光柵之特性探討
Investigation of π-phase-shifted Long-Period Waveguide Gratings on Silicon-on-Insulator (SOI) Substrates
指導教授: 莊文魁
Chuang, Ricky Wenkuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 93
中文關鍵詞: 光波導二氧化鈦長週期光柵極化偏振
外文關鍵詞: Optical waveguide, long-period grating, waveguide filters, phase shift grating
相關次數: 點閱:156下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長週期光柵(Long-period grating, LPG)著重在基本波導模態(fundamental guided mode)和批覆層模態(cladding mode)之間的耦合特性。傳統上利用光纖來做長週期光柵會有幾何形狀和材料選擇上的限制,為了要消除光纖在製作上所面臨的限制和實現元件積體化,長週期波導光柵(Long period waveguide grating, LPWG)也因此被提出研究和實現。,然而隨著積體光學電路的進步,由於傳統的光柵濾波器之單一的工作波長已經無法應用於過濾多個波長的特殊頻譜需求,因此進而促使一些多波長的元件譬如像高密度分波多工系統(DWDM)的問世。但此類元件多半利用兩個或兩個以上的獨立濾波器去達到其工作需求,在後續的元件積體化整合上將會變得更加困難,但如果使用相移式(phase-shift)長週期光柵去達到兩個甚至以上的抑制頻帶則可滿足此需求。
    在本論文中,我們成功地在矽基板上製作出長週期波導光柵元件,其光柵週期為Λ=5.52 μm。隨後量測得到長週期光柵元件最大對比度達到17.3dB,半高全寬(FWHM)為9.2nm,諧振波長量測得到1577nm,接近模擬所得到的結果。此外,這裡提出並且製作多個(M長週期光柵連結而成,由實驗可觀察到,區段(M)數目增加,兩主共抑制頻帶之間的旁瓣亦會增加為(M-2)個,與文獻理論相符合。

    We propose a design of the long-period waveguide gratings (LPWGs) on silicon-on-insulator (SOI) substrates. In this work, SOI channel waveguides were defined and etched by ICP as core guiding layer. In addition, the cladding layer was realized by deposited TiO2 into the top surface of SOI film. The transmission spectra of these LPWGs were then measured with optical spectrum analyzer. The full-width at half-maximum(FWHM) is 9.2nm. The transmission dip contrast close to 17.3dB was observed at the wavelength of 1577nm. The phase-shifted long period gratings with a finite number (M) of sections cascaded together are proposed and fabricated. It is expected theoretically and to be later justified experimentally that an M-section phase-shifted long period grating would produce (M2) sidelobes between two dominant rejection bands, while the separation between the two rejection bands increases linearly with respect to M.

    中文摘要……………………………………………………………………...I 英文摘要.……………………………………………………………………III 致謝…………………………………………………………………………XI 目錄………………………………………………………………………..XIII 表目錄……………………………………………………………………...XVII 圖目錄……………………………………………………………… .........XVIII 第一章 序論 1.1 光通訊簡介………………………1 1.2 矽光學積體電路………………………4 1.3 研究動機………………………5 1.4 論文架構………………………6 參考文獻………………………7 第二章 長週期光柵 2.1 導論………………………9 2.2 長週期光纖光柵(Long-period fiber gratings, LPFGs ……11 2.2.1 光學濾波器製作於長週期光纖光柵………………………15 2.3 長週期波導光柵(Long-period waveguide gratings, LPWG…17 2.3.1光學濾波器製作於長週期波導光柵………………………19 2.4 相位移長週期光纖光柵………………………22 參考文獻………………………27 第三章 批覆層薄膜沉積 3.1 前言………………………33 3.2 二氧化鈦介紹………………………33 3.3 二氧化鈦結構與特性………………………34 3.4 二氧化鈦薄膜製備………………………36 3.5 射頻磁控濺鍍系統………………………37 3.6 沉積過程………………………39 3.7 蒸鍍、化學氣相沉積、濺鍍二氧化鈦薄膜之比較………………………40 參考文獻………………………41 第四章 長週期波導光柵模擬設計與製作流程 4.1 導論………………………47 4.2 元件設計之目的………………………47 4.2.1 波導層與批覆層之模態有效折射率………………………49 4.2.2 光柵間距之模擬與計算………………………50 4.3 元件製作………………………52 4.3.1 元件基材之差異………………………52 4.3.2 元件製作流程………………………54 4.3.3 蝕刻矽晶圓………………………58 4.3.4 RF sputter沉積二氧化鈦薄膜………………………61 4.3.5 抛光研磨………………………62 4.3.6 光場量測………………………64 第五章 長週期波導光柵穿透頻譜之特性分析 5.1 導論………………………68 5.2 穿透頻譜(Transmission spectrum )之量測與分析………………………68 5.2.1 相位移長週期光柵之頻譜分析………………………71 5.2.2 相位移長週期光柵之頻譜模擬………………………72 5.2.3 兩個區段的相位移長週期光柵………………………74 5.2.4 三個區段的相位移長週期光柵………………………76 5.2.5 四個區段的相位移長週期光柵………………………78 5.2.6 五個區段的相位移長週期光柵………………………80 5.3 結論………………………82 參考文獻………………………85 第六章 結論與未來進展 6.1 結論………………………86 6.2 未來進展與應用………………………89 參考文獻………………………92

    第一章
    [1] S. E. Miller, “Integrated optics: An introduction,”Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
    [2] F. Kane and Robert R. Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photo. Tech. Lett., vol. 7, No. 5, pp. 535-537, 1995.
    [3] G. H. Olsen, “InGaAsP laser diodes,”Opt. Eng., vol. 20, pp. 440-445, 1981.
    [4] T. Miya, T. Hosaka, Y. Terunuma, and T. Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,”Rev. Electrical Commun. Lab., vol. 27, pp. 497-506, 1979.
    [5] P. Hall and P. Kaiser, “Vibrational mode assignments,”Appl. Phys. Lett., vol. 23, pp. 45-46, 1973.
    [6] H. Nishihara, M. Haruna, and T. Suhara, Optical integrated circuits. New York: McGraw-Hill Book Company, 1989.
    [7] R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,”Electron. Lett., vol. 21, pp. 738-740, 1985.
    [8] S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,”Electron. Lett., vol. 21, pp. 737-738, 1985.
    [9] R. M. Emmons, B. N. Kurdi, and D. G. Hall, “Buried-oxide silicon -on-insulator structures 1: optical waveguide characteristics,”IEEE J. Quant. Electron., vol. 28, pp. 157-163, 1992.
    [10] M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, “All-silicon avalanche photodiode sensitive at 1.3μm with picosecond time resolution,”IEEE J. Quant. Electron., vol. 28, pp. 2678-2681, 1992.
    [11] A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “A miniaturizable Si-based electro-optical modulator working at 1.5μm,”Appl. Phys. Lett., vol. 86, pp.201115-1-201115-3, 2004.
    [12] Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,”IEEE Photon. Technol. Lett., vol. 9, pp. 1113-1115, 1997.
    [13] Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,”Nature., vol. 427, pp.615-618, 2004.

    第二章
    [1] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,”J .Lightwave Technol., vol. 14, pp. 58-65, Jan. 1996.
    [2] Vikram Bhatia, David Campbell, and Richard O. Claus, “Simultaneous strain and temperature measurement with long-period gratings,”Opt. Lett., vol. 22, pp. 648-650, May 1997.
    [3] Mei Nar Ng, Zhihao Chen, and Kin Seng Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,”IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
    [4] A. W. Snyder, “Coupled-mode theory for optical fibres,”J. Opt. Soc. Am., vol. 62, pp. 1267-1972, Nov. 1972.
    [5] Kenneth O. Hill and Gerald Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,”J. Lightwave Technol, vol. 15, pp. 1263-1276, Aug.1997.
    [6] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,”IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
    [7] S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair,”IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, 2005.
    [8] K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings,”Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000.
    [9] De-Long Zhang, Yun Zhang, Yu-Ming Cui, and Cai-He Chen, E.Y.B. Pun, “Long period grating in / on planar and channel waveguides: A theory description,”Opt. Laser Technol., vol. 39, pp. 1204–1213, Sep. 2007.
    [10] K.S. Chiang, C.K. Chow, H.P. Chan, Q. Liu, and K.P. Lor, “Widely tunable polymer long-period waveguide grating with polarization insensitive resonance wavelength,”Electron. Lett., vol. 40, pp. 422-424, Apr. 2004.
    [11] Qing Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 241115, Jun. 2005.
    [12] X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,”J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
    [13] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,”IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
    [14] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,”Opt. Commun., vol. 208, pp. 321-327, July 2002.
    [15] X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,”IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001.
    [16] S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,”Opt. Lett., vol. 21, pp. 336-338, Mar. 1996.
    [17] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter,”IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997.
    [18] J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings,”Electron. Lett., vol. 34, pp. 1132-1133, May 1998.
    [19] M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks,”Electron. Lett., vol. 36, pp. 512-514, Mar. 2000.
    [20] X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,”Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002.
    [21] A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs,”IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005.
    [22] C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,”Opt. Eng., vol. 43, pp.342-345, Feb. 2004.
    [23] K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,”Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Feb. 2005.
    [24] P. G. Greene and H. N. Rourke, “Tailoring long period optical fibre gratings for flattening EDFA gain spectra,”Electron. Lett., vol. 35, pp. 1373-1374, 1999.
    [25] M. Harumoto, M. Shigehara, and H. Suganuma, “Gain-flattening filter using long-period fiber gratings,”J. Lightwave Technol., vol. 20, pp. 1027-1033, May 2002.
    [26] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,”IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998.
    [27] V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,”Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002.
    [28] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,”J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003.
    [29] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,”IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
    [30] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,”Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
    [31] H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,”Appl. Phys. B, vol. 79, pp. 95–98, 2004.
    [32] Q. Liu, K. S. Chiang, and K. P. Lor, “Long-period gratings in polymer ridge waveguides,”Optics Express, vol. 13, pp. 1150–1160, Feb. 2005.
    [33] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 2441115, Jun. 2005.
    [34] A. Perentos, G. Kostovski, and Arnan Mitchell, “Polymer Long-Period Raised Rib Waveguide Gratings Using Nano-Imprint Lithography,”IEEE Photon. Technol. Lett. , vol. 17, pp. 2595–2597, Dec. 2005.
    [35] M. S. Kwon and S. Y. Shin, “Tunable Polymer Waveguide Notch Filter Using a Thermooptic Long-Period Grating,”IEEE Photon. Technol. Lett. , vol. 17, pp. 145–147, Jan. 2005.
    [36] K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-Rejection Filter With Widely Tunable Center Wavelength and Contrast Using Metal Long-Period Grating on Polymer Waveguide,”IEEE Photon. Technol. Lett. , vol. 18, pp. 1109–1111, May 2006.
    [37] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of Corrugated Long-Period Gratings in Slab Waveguides and Their Polarization Dependence,”J. Lightwave Technol., vol. 21, pp. 3339–3405, Dec. 2003
    [38] S. Pal and B. R. Singh, “Analysis and Design of Corrugated Long-Period Gratings in Silica-on-Silicon Planar Waveguides,”J. Lightwave Technol., vol. 25, pp. 2260–2267, Aug. 2007.
    [39] S. Pal, A. Chauhan, M. Singh, P. Kumar, M. Sharma, N. Pradhan, K. Singh, and C. Dhanavantri, “Realization of Long-Period Corrugated Grating in Silica-on-Silicon-Based Channel Waveguide,”IEEE Photon. Technol. Lett. , vol. 21, pp. 1490–1492, Oct. 2009.
    [40] J. Jiang, C. L. Callender, and C. J. Ledderhof, ”Corrugation-Induced SiO2 Planar Long-Period Gratings for Photonic Applications,”IEEE Photonics Technol. Lett, vol. 20, pp. 520-522, July 2010.
    [41] W. Jin, K. S. Chiang, and Q. Liu, “Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate,”Opt. Exp., vol. 16, pp. 20409-20417, Dec. 2008.
    [42] W. Jin, K. S. Chiang, and Q. Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching,”Opt. Lett., vol. 35, pp. 484-486, Feb. 2010.
    [43] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings,”IEEE Photonics Technology Letters, vol. 20, July 15, 2008.
    [44] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun,“Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide,”IEEE Photonics Technology Letters, vol. 22 , Sep. 15, 2010
    [45] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 241115, Jun. 2005.

    第三章
    [1] 李雅明, “固態電子學, “全華, pp. 515-523 (1995) 。
    [2] N. Martin, D. Baretti, C. Rousselot, J. Rauch, “Surface and Coatings Tech. , “107, pp. 172-182 (1998).
    [3] O. Treichel, V. Kirchhoff, “Surface and Coatings Tech. , “123, pp. 268-272 (2000).
    [4] A. Azens, L. Kullman, D. D. Ragan, and C. G. Granqvist, “Appl. Phys. Lett. , “68(26), pp. 3701-3703 (1996).
    [5] 陳啟明, “以磁控濺鍍法製備二氧化鈦薄膜電容器及電性分析, “清華大學電子所碩士論文 (2000) 。
    [6] M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, R. Lamb, “Thin Solid Films, “326, pp. 238-244 (1998).
    [7] N. Negishi, K. Takeuchi, “Materials Letters, “38, pp. 150-153 (1999).
    [8] J. V. Grahn, and M. Linder, “J. Vac. Sci. Tech. A, “16(4), pp. 2495-2500 (1998).
    [9] Jeremy K.Burdett., Timothy Hughbank, Gordon J. Miller, James W. Richardson, Joseph V. Smiyh, J. Am. Chem. Soc.109(1987) 3639.
    [10] P.J. Martin, H.A. Macleod, R.P. Netterfield, C.G. Pacey and W.G. Sainty, ” Ion-beam-assisted deposition of thin films,” Appl. Opt., 22, pp.178-184 (1983).
    [11] J.R. McNeil, A.C. Barron, S.R. Wilson and W.C. Herrmann, ”Ion-assisted deposition of optical thin film: low energy vs high energy bombardment,” Appl. Opt., 23, pp.552-559 (1984).
    [12] J.R. McNeil, G.A. Al-Jumaily, K.C. Jungling and A.C. Barron, ” Properties of TiO2 and SiO2 thin films deposited using ion assisted deposition, ” Appl. Opt., 24, pp.486-489 (1985).
    [13] Q. Tang, K. Kikuchi, S. Ogura and H.A. Macleod, ” Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion-beam assisted deposition,” J. Vac. Sci. Technol. A17 (6), pp.1-6 (1999).
    [14] Jeremy K. Burdett . , Timothy Hughbank , Gordon J. Miller , James W. Richardson , Joseph V. Smiyh , J. Am. Chem. Soc. 109 (1987) 3639.
    [15] A. Sclafani , J. H. Herrmann , J. Phys. Chem. 100 (1996) 13655.
    [16] A. Sclafani , L. Palmisano , M. Schiavello , J. Phys. Chem. 94 (1990)829.
    [17] J. Musil , J. Vleck , Materials Chemistry and physics 54 (1998) 116.
    [18] J. Rodriguez , M. Gomez , J. Ederth G. A. Niklasson , C.G. Graqvist , thin Solid Film 365 (2000) 119.
    [19] Akira Shibata , Kunio Okimura , Yukio Yamamoto , Kakuei Matubara, Jpn. J. Appl. Phys. 32 (1993) 5666.
    [20] M. Gomez , J. Rodriguez , S.-E. Lindquist , C.G. Granqvist , Thin Solid Films 342 (1999) 148.
    [21] S. G. Springer , P.E. Schmid , R. Schmid , R. Sanjines , F. levy , Surface and Coatings Technology 151-152 (2002) 51.
    [22] 呂信德,“磁控濺鍍TiO2-WO3 複合膜光催化性質之研究",碩士論文,國立成功大學資源工程學系碩博士班,台南(2003) 。
    [23] P. Jin , L. Miao , S. Tanemura , G. Xu , M. Tazawa , K. Yoshimura , Applied Surface Science 212-213 (2003) 775.
    [24] Dwight R. Acosta , Arturo I. Martinez , Alcidez A. Lopez , Carlos R. Magana , Journal of Molecular Catalysis A : Chemical 228 (2005)183.
    [25] L. Miao , P. Jin , K. Kaneko , A. Terai , N. Nabatova-Gabain , S. Tanemura , Applied Surface Science 212-213 (2003) 255.
    [26] S. K. Zheng , T. M. Wang , G. Xiang , C. Wang , Vacuum 62 (2001) 361.
    [27] B. Karunagaran , R. T. Rajendra Kumar , V. Senthil Kumar , D. Mangalaraj , Sa. K. Narayandass , G. Mohan Rao , Materials Science in Semiconductor Processing 6 (2003) 547.
    [28] B. Karunagaran , R. T. Rajendar Kumar , D. Mangalaraj , Sa. k. Narayandass , G. Mohan Rao , Cryst. Res. Technol. 37 (2002) 1285.
    [29] Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide”, Progress in Solid State Chemistry, 32, pp.33–177 (2004).
    [30] J. K. Burdett, T. Hughbank, G. J. Miller, J. W. Richardson and J. V. Smith, “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, Journal of American Chemical Society, 109, pp.3639-3646 (1987).
    [31] H. Toku, R. S. Pessoa , H. S. Maciel, M. Massi, U. A. Mengui, “The effect of oxygen concentration on the low temperature deposition of TiO2 thin films”, Surface & Coatings Technology, 202, pp.2126–2131 (2008).
    [32] M. Dhayal, J. Jun, H. B. Gu, K. H. Park, “Surface chemistry and optical property of TiO2 thin films treated by low-pressure plasma”, Journal of Solid State Chemistry, 180, pp.2696–2701 (2007).
    [33] O. Zywitzki, T. Modes, P. Frach, D. Gloss, “Effect of structure and morphology on photocatalytic properties of TiO2 layers”, Surface & Coatings Technology, 202, pp.2488–2493 (2008).
    [34] S. Ohno, N. Takasawa, Y. Sato, M. Yoshikawa, K. Suzuki, P. Frach and Y. Shigesato, “Photocatalytic TiO2 films deposited by reactive magnetron sputtering with unipolar pulsing and plasma emission control systems”, Thin Solid Films, 496, 1, pp. 126-130 (2006).
    [35] M. F. Hossain, S. Biswas, T. Takahashi, Y. Kubota, A. Fujishima, “Influence of direct current power on the photocatalytic activity of facing target sputtered TiO2 thin films”, Thin Solid Films, 517, pp.1091–1095 (2008).
    [36] S. Ohno, D. Sato, M. Kona, P. K. Song, M. Yoshikawa, K. Suzuki, P. Frach, Y. Shigesato, “Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films”, Thin Solid Films, 445, pp.207–212 (2003).
    [37] C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, “Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation”, Applied Surface Science, 254, pp.2685–2689 (2008).
    [38] J. Venables, “Nucleation and growth of thin films”, rep. prog. phys., 47, pp.399-459 (1984).
    [39] 曾治豪,“沉積參數影響二氧化鈦光觸媒薄膜之研究”,碩士論文,龍華科技大學工程技術研究所,桃園(2008)。
    [40] 郭益男,“反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究”,碩士論文,國立中山大學電機工程學系研究所,高雄(2004) 。
    [41] B. Chapman, “Glow Discharge Processes”, John Wiley and Sons, New York, pp.106-109 (1980).
    [42] 郭哲豪,“二氧化鈦與奈米矽 , 非晶矽鍺及氧化鎢複合膜的可見光催化特性及親水性之研究”,碩士論文,國立成功大學微電子工程研究所,台南(2004)。
    [43] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson Jr., and J. V. Smith, “Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, Journal of the American Chemical Society 109, no. 12, 3639-3646, (1987).
    [44] P. I. Gouma, P. K. Dutta, and M. J. Mills, “Structural stability of titania thin films”, Nanostructured Materials 11, no. 8: 1231-1237, (1999).
    [45] 林國棟,“射頻磁控濺鍍TiO2薄膜之研究”,碩士論文,國立清華大學材料工程科學學系研究所,新竹(2001) 。

    第五章
    [1] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description,” Opt. Laser Technol., Vol. 39, pp. 1204-1213, Sept. 2007.
    [2] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett., Vol. 15, pp. 1094-1096, Aug. 2003.

    第六章
    [1] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarization insensitive resonance wavelength,”Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
    [2] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,”Appl. Phys. Lett., vol. 86, 2441115, June, 2005.
    [3] A. Perentos, G. Kostovski, and Arnan Mitchell, “Polymer Long-Period Raised Rib Waveguide Gratings Using Nano-Imprint Lithography,”IEEE Photon. Technol. Lett. , vol. 17, pp. 2595–2597, Dec. 2005.
    [4] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,”IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
    [5] S. Pal, A. Chauhan, M. Singh, P. Kumar, M. Sharma, N. Pradhan, K. Singh, and C. Dhanavantri, “Realization of Long-Period Corrugated Grating in Silica-on-Silicon-Based Channel Waveguide,”IEEE Photon. Technol. Lett. , vol. 21, pp. 1490–1492, Oct. 2009.
    [6] J. Jiang, C. L. Callender, and C. J. Ledderhof, ”Corrugation-Induced SiO2 Planar Long-Period Gratings for Photonic Applications,”IEEE Photonics Technol. Lett, vol. 20, pp. 520-522, July, 2010.
    [7] Wei Jin, Kin Seng Chiang, and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching,”Opt. Lett. , vol. 35, no. 4 , Feb. 15, 2010.
    [8] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings,”IEEE Photonics Technology Letters, vol. 20, no. 14, July 15, 2008.
    [9] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun, “Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide,”IEEE Photonics Technology Letters, vol. 22, no. 18, Sep. 15, 2010
    [10] J. T. Hastings, Henry I. Smith, “Apodized Optical Filters based on Silicon-on-Insulator Waveguides with Sidewall Gratings,” Optical Society of America, 2004
    [11] S. Garidel, D. Lauvernier, J. P. Vilcot, M. Franc ois, and D. Decoster, “Apodized bragg filters on InP materials ridge waveguidesusing sampled gratings,” MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Vol. 48, No. 8, August 2006

    下載圖示 校內:2018-07-25公開
    校外:2024-07-25公開
    QR CODE