簡易檢索 / 詳目顯示

研究生: 盧靖文
Lu, Jing-Wen
論文名稱: AVM在晶圓切割製程之應用
Applying AVM for Wafer Sawing Processes
指導教授: 鄭芳田
Cheng, Fan-Tien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 47
中文關鍵詞: 晶圓切割製程全自動虛擬量測系統集成學習自動分類機制
外文關鍵詞: Wafer Sawing Processes, Automatic Virtual Metrology, Ensemble Learning, Automated Classification Scheme
相關次數: 點閱:124下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全自動虛擬量測在半導體產業有相當廣泛的應用,可將離線且具延遲特性之品質抽檢改成線上且即時之品質全檢。晶圓切割製程在整個製程結束後才會進行整批晶圓的全檢,若在製程當中發生問題,仍需等到出貨前全檢站點才可發覺,如此將可能產生大量缺陷品。晶圓切割製程導入全自動虛擬量測後,在發現製程異常時就可立即進行即時改善,如此就可避免後續整批晶圓的浪費。然而全自動虛擬量測應用於晶圓切割製程時,需進行晶圓崩缺(Wafer Chipping)的數值預測;但並非每片晶圓都有晶圓崩缺產生,且全自動虛擬量測系統也無法分辨晶圓有無崩缺產生,進而對於每片晶圓都給予預測值,造成使用者無法藉由全自動虛擬量測系統區分晶圓是否發生崩缺。
    為解決上述問題,將晶圓切割品質監控分為兩階段,階段一開發以集成學習為基礎的自動分類機制(Automated Classification Scheme, ACS)預先判斷該片晶圓否有崩缺發生,若有崩缺發生再進行階段二之全自動虛擬量測,進行崩缺數值預測,期達到晶圓切割製程階段的線上即時品質監控。

    Automatic Virtual Metrology (AVM) has a wide range of applications in the semiconductor industry. It can convert sampling inspection with metrology delay into real-time and online total inspection. For the current wafer sawing process, the whole lot of wafers is inspected at the end of entire process; therefore, a defect occurs during processing will only be detected until the process finish, which is too late and may cause massive defects. After implementing AVM to the Wafer Sawing process, when an abnormality is found, it can be improved immediately to avoid generating defects in the subsequent wafers. Therefore, there is a need to predict wafer-chipping occurrence before applying AVM to the wafer sawing process. However, chipping won’t happen to all wafers. The AVM system can predict the chipping value for each wafer when a chipping exists while AVM cannot distinguish if the wafer has chipping or not; in other words, users can’t differentiate whether the wafer is chipped through the AVM system.
    To solve the above mentioned problem, the wafer sawing quality monitoring is divided into two stages. An Automated Classification Scheme (ACS) based on ensemble learning is developed in Stage 1 to pre-determine whether there is chipping in the wafer. If chipping is detected, then proceed to Stage 2 for the AVM system to predict the chipping value.

    摘 要 I 誌 謝 X 目 錄 XII 圖 目 錄 XIV 表 目 錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.2.1 研究動機 3 1.2.2 研究目的 4 1.3 研究流程 5 1.4 論文架構 6 第二章 文獻探討與理論基礎 7 2.1 文獻探討 7 2.1.1 晶圓表面檢測方法 7 2.1.2 Chipping預測方法 8 2.1.3 晶圓切割製程關鍵因子 9 2.1.4 數據不平衡 9 2.1.5 集成學習 9 2.2 理論基礎 11 2.2.1 全自動虛擬量測(Automatic Virtual Metrology, AVM) 11 2.2.2 超採樣方法(Oversampling) 12 2.2.3 隨機森林(Random Forest) 13 2.2.4 極限梯度提升(XGboost) 15 第三章 研究方法 17 3.1晶圓切割製程品質監控之兩階段演算法架構 17 3.2 Automatic Classification Scheme 18 3.2.1 ACS建模流程 18 3.2.2 ACS線上流程 22 3.2.3 分類信心度指標 27 3.2.4 分類整體相似度指標 29 第四章 案例呈現 31 4.1 實驗描述 31 4.2 階段1-ACS實驗 32 4.3 階段2-AVM實驗 38 第五章 結論與未來研究 44 5.1 結論 44 5.2 未來研究 44 參考文獻 45

    [1] 林秀玲,半導體封裝製程參數設計之研究,逢甲大學工業工程研究所,碩士論文,民國89年。
    [2] 林志良,晶圓切割製程的穩健設計-六標準差與田口實驗設計的應用,國立高雄應用科技大學工業工程與管理系碩士班,碩士論文,民國98年。
    [3] C. Li, C. Chang and M. Jeng, "Applying Regional Level-Set Formulation to Post sawing Four-Element LED Wafer Inspection," in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 6, pp. 842-853, Nov. 2011.
    [4] C.-F. Chang, J.-L. Wu, Y.-C. Wang, “A Hybrid Defect Detection Method for Wafer level Chip Scale Package Images“, International Journal on Computer, Consumer and Control (IJ3C), Vol. 2, No.2,pp.25-36, 2013.
    [5] T.-J. Su, Y.-F. Chen, J.-C. Cheng, C.-L. Chiu, “Automated image analysis for evaluation of wafer backside chipping“, The International Journal of Advanced Manufacturing Technology, Vol. 99, pp.2015–2023, 2018 .
    [6] T.-J. Su, Y.-F. Chen, J.-C. Cheng, C.-L. Chiu, “An artificial neural network approach for wafer dicing saw quality prediction“, Microelectronics Reliability, vol.91, pp. 257–261, 2018.
    [7] M. Vagues, “Analysing backside chipping issues of the die at wafer saw,” San Jose State University, San Jose, CA, 2003, retrieved November 23, 2011.
    [8] H. He, E.-A. Garcia, “Learning from Imbalanced Data“, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, vol. 21, no. 9, pp. 1263–1284, Sep. 2009.
    [9] T.-G. Dietterich, “Ensemble Methods in Machine Learning,” Proc. Conf. Multiple Classifier Systems, pp. 1-15, 2000.
    [10] F. Cheng, H. Huang and C. Kao, "Developing an Automatic Virtual Metrology System," in IEEE Transactions on Automation Science and Engineering, vol. 9, no. 1, pp. 181-188, Jan. 2012.
    [11] D. Zhang, L. Qian, B. Mao, C. Huang, B. Huang and Y. Si, "A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forest and XGboost," in IEEE Access, vol. 6, pp. 21020-21031, 2018.
    [12] M. PAL, "Applying Regional Level-Set Formulation to Postsawing Four-Element LED Wafer Inspection," International Journal of Remote Sensing, Vol. 26, No. 1, pp.217–222, 10 January 2005.
    [13] Z. Masetica, A. Subasib, “Congestive heart failure detection using random Forest classifier,” Compute Methods Programs Biomed,Vol.130 , pp. 54-64, 2016.
    [14] S. A. Shevchik, F. Saeidi, B. Meylan and K. Wasmer, "Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm," in IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1541-1553, Aug. 2017.
    [15] L. Torlay, M. Perrone-Bertolotti, E. Thomas, M. Baciu, “Machine learning–XGBoost analysis of language networks to classify patients with epilepsy," Brain Informatics, vol.4, pp. 159–169, 2017.
    [16] W. Chen, K. Fu, J. Zuo, X. Zheng, T. Huang and W. Ren, "Radar emitter classification for large data set based on weighted-xgboost," in IET Radar, Sonar & Navigation, vol. 11, no. 8, pp. 1203-1207, 8 2017.
    [17] J. Zhong, Y. Sun, W. Peng, M. Xie, J. Yang and X. Tang, "XGBFEMF: An XGBoost-Based Framework for Essential Protein Prediction," in IEEE Transactions on NanoBioscience, vol. 17, no. 3, pp. 243-250, July 2018.
    [18] J. Bergstra, Y. Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res., vol. 13, no. 1, pp. 281-305, 2012.
    [19] L. Rokach, O. Maimon, Data Mining with Decision Trees:Theory and Applications, World Scientific Publishing Co. Pte.Ltd., 2008.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE