簡易檢索 / 詳目顯示

研究生: 黃暐倫
Huang, Wei-Lun
論文名稱: 以濺鍍法製備氧化鎵系列金屬氧化物元件及其光電應用之研究
The Study on Metal Oxide Devices Based on Gallium Oxide via Sputtering Method and Their Optoelectronic Applications
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 137
中文關鍵詞: 金屬氧化物氧化鎵系列材料光檢測器光電晶體薄膜電晶體電阻式記憶體
外文關鍵詞: metal oxide, Ga2O3-based material, photodetector, phototransistor, thin film transistor, RRAM
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract in Mandarin I Abstract in English IV Acknowledgements VIII Contents X Table Captions XIV Figure Captions XVI Chapter 1 Introduction 1 1-1 Overview of Metal Oxide Semiconductor 1 1-2 Overview of Ultraviolet Photodetectors 3 1-3 Overview of Thin Film Transistor 4 1-4 Overview of Resistive Random-Access Memory 6 1-5 Organization of Dissertation 9 Reference 11 Chapter 2 Approaches of Measurement, Experimental Parameters, and Introduction of Experimental Instruments 17 2-1 Important Parameters for Ultraviolet Photodetectors 17 2-1-1 Responsivity 17 2-1-2 UV-to-visible Rejection Ratio 18 2-1-3 Photo-to-dark Current Ratio 18 2-2 Important Parameters for Thin Film Transistor 18 2-2-1 Threshold Voltage (Vt/Vth) 19 2-2-2 Field-Effect Mobility 20 2-2-3 On/off Current Ratio (Ion/Ioff) 22 2-2-4 Subthreshold Swing (SS) 22 2-3 Experimental Apparatus 23 2-3-1 Radio-frequency Sputtering System 23 2-3-2 Plasma-enhance Chemical Vapor Deposition (PECVD) 25 2-3-3 X-ray Diffraction Analysis (XRD) 25 2-3-4 Energy-Dispersive X-ray Spectroscopy (EDS) 28 2-3-5 X-ray Photoelectron Spectroscopy (XPS) 29 2-3-6 UV-vis Spectroscopy 30 2-3-7 Measurement Systems 30 Reference 32 Chapter 3 Investigation of Zinc Gallate Optoelectronics Device Prepared by RF Sputtering System 33 3-1 Motivation 33 3-2 Characteristics of Zinc Gallate Thin Film 33 3-2-1 Preparation of Zinc Gallate Thin Film 34 3-2-2 Analysis of Zinc Gallate Thin Film 35 3-3 Performance of Zinc Gallate UV Photodetectors 41 3-3-1 Fabrication of Zinc Gallate UV Photodetectors 41 3-3-2 Results and Discussion 42 3-4 Performance of Zinc Gallate Thin Film Transistors 48 3-4-1 Fabrication of Zinc Gallate Thin Film Transistors 48 3-4-2 Results and Discussion 49 3-5 Summary 53 Reference 55 Chapter 4 Investigation of Aluminum Gallium Zinc Oxide Optoelectronics Device Prepared by RF Sputtering System 57 4-1 Motivation 57 4-2 Characteristics of AGZO Thin Film 57 4-2-1 Preparation of AGZO Thin Film 58 4-2-2 Analysis of AGZO Thin Film 58 4-3 Performance of AGZO UV Photodetectors 64 4-3-1 Fabrication of AGZO UV Photodetectors 64 4-3-2 Results and Discussion 65 4-4 Performance of AGZO Thin Film Transistors 73 4-4-1 Fabrication of AGZO Thin Film Transistors 73 4-4-2 Results and Discussion 74 4-5 Summary 81 Reference 83 Chapter 5 Investigation of Indium Gallium Oxide Optoelectronics Device Prepared by RF Sputtering System 86 5-1 Motivation 86 5-2 Characteristics of Indium Gallium Oxide Thin Film 86 5-2-1 Preparation of Indium Gallium Oxide Thin Film 86 5-2-2 Analysis of Indium Gallium Oxide Thin Film 87 5-3 Performance of Indium Gallium Oxide UV Photodetectors 91 5-3-1 Fabrication of Indium Gallium Oxide UV Photodetectors 91 5-3-2 Results and Discussion 92 5-4 Performance of Indium Gallium Oxide Thin Film Transistors 96 5-4-1 Fabrication of Indium Gallium Oxide Thin Film Transistors 96 5-4-2 Results and Discussion 98 5-5 Summary 104 Reference 106 Chapter 6 Investigation of Indium Gallium Oxide Non-volatile RRAM Prepared by RF Sputtering System 108 6-1 Motivation 108 6-2 Characteristics of InxGa1-xO Thin Film 109 6-2-1 Preparation of InxGa1-xO Thin Film 109 6-2-2 Analysis of InxGa1-xO Thin Film 110 6-3 Performance of single layer InGaO RRAM 113 6-3-1 Fabrication of single layer InGaO RRAM 113 6-3-2 Results and Discussion 114 6-4 Performance of Stacked InxGa1-xO RRAM 123 6-4-1 Fabrication of Stacked InxGa1-xO RRAM 123 6-4-2 Results and Discussion 124 6-5 Summary 130 Reference 132 Chapter 7 Conclusion and Future Work 134 7-1 Conclusion 134 7-2 Future Work 136

    Rostan, P.; Rau, U.; Nguyen, V.; Kirchartz, T.; Schubert, M.; Werner, J. (2006). Low-temperature a-Si: H/ZnO/Al back contacts for high-efficiency silicon solar cells. Solar energy materials and solar cells , 90 (9), 1345-1352.
    Hamasaki, T.; Kurata, H.; Hirose, M.; Osaka, Y. (1980). Low‐temperature crystallization of doped a‐Si: H alloys. Applied Physics Letters, 37 (12), 1084-1086.
    Plagwitz, H.; Nerding, M.; Ott, N.; Strunk, H.; Brendel, R. (2004). Low‐temperature formation of local Al contacts to a‐Si: H‐passivated Si wafers. Progress in Photovoltaics: Research and Applications, 12 (1), 47-54.
    Kakkad, R.; Smith, J.; Lau, W.; Fonash, S.; Kerns, R. (1989). Crystallized Si films by low‐temperature rapid thermal annealing of amorphous silicon. Journal of applied physics, 65 (5), 2069-2072.
    Hoheisel, M.; Carius, R.; Fuhs, W. (1984). Photoconductivity and photoluminescence of a-Si: H at low temperature. Journal of non-crystalline solids, 63 (3), 313-319.
    Tawada, Y.; Yamagishi, H. (2001). Mass-production of large size a-Si modules and future plan. Solar energy materials and solar cells, 66 (1-4), 95-105.
    Yamamoto, K.; Yoshimi, M.; Tawada, Y.; Fukuda, S.; Sawada, T.; Meguro, T.; Takata, H.; Suezaki, T.; Koi, Y.; Hayashi, K. (2002). Large area thin film Si module. Solar energy materials and solar cells, 74 (1-4), 449-455.
    Tawada, Y.; Yamagishi, H.; Yamamoto, K. (2003). Mass productions of thin film silicon PV modules. Solar energy materials and solar cells, 78 (1-4), 647-662.
    Chen, Y.; Denis, K.; Kazlas, P.; Drzaic, P. In 12.2: A Conformable Electronic Ink Display using a Foil‐Based a‐Si TFT Array, SID Symposium Digest of Technical Papers, Wiley Online Library: 2001; pp 157-159.
    Yoshikawa, T.; Morita, K. (2009). Refining of silicon during its solidification from a Si–Al melt. Journal of Crystal Growth, 311 (3), 776-779.
    Lin, H. C.; Lee, M. H.; Su, C. J.; Huang, T. Y.; Lee, C.; Yang, Y. S. (2005). A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel. IEEE electron device letters, 26 (9), 643-645.
    Qu, M.; Chang, C. H.; Meng, T.; Zhang, Q.; Liu, P. T.; Shieh, H. P. D. (2017). Stability study of indium tungsten oxide thin‐film transistors annealed under various ambient conditions. physica status solidi (a), 214 (2), 1600465.
    Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. nature, 432 (7016), 488-492.
    Rim, Y. S.; Chen, H.; Kou, X.; Duan, H. S.; Zhou, H.; Cai, M.; Kim, H. J.; Yang, Y. (2014). Boost up mobility of solution‐processed metal oxide thin‐film transistors via confining structure on electron pathways. Advanced Materials, 26 (25), 4273-4278.
    Zan, H. W.; Yeh, C. C.; Meng, H. F.; Tsai, C. C.; Chen, L. H. (2012). Achieving high field‐effect mobility in amorphous indium‐gallium‐zinc oxide by capping a strong reduction layer. Advanced materials, 24 (26), 3509-3514.
    Kamiya, T.; Kawasaki, M. (2008). ZnO-based semiconductors as building blocks for active devices. MRS bulletin, 33 (11), 1061-1066.
    Choi, J. H.; Yang, J. H.; Nam, S.; Pi, J. E.; Kim, H. O.; Kwon, O. S.; Park, E. S.; Hwang, C. S.; Cho, S. H. (2016). InZnO/AlSnZnInO bilayer oxide thin-film transistors with high mobility and high uniformity. IEEE Electron Device Letters, 37 (10), 1295-1298.
    Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. (2003). Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 300 (5623), 1269-1272.
    Kamiya, T.; Nomura, K.; Hosono, H. (2010). Present status of amorphous In–Ga–Zn–O thin-film transistors. Science and Technology of Advanced Materials.
    Fortunato, E. M.; Barquinha, P. M.; Pimentel, A. C.; Gonçalves, A. M.; Marques, A. J.; Martins, R. F.; Pereira, L. M. (2004). Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 85 (13), 2541-2543.
    Chabak, K. D.; Moser, N.; Green, A. J.; Walker Jr, D. E.; Tetlak, S. E.; Heller, E.; Crespo, A.; Fitch, R.; McCandless, J. P.; Leedy, K. (2016). Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Applied Physics Letters, 109 (21), 213501.
    Horng, R. H.; Huang, C. Y.; Ou, S. L.; Juang, T. K.; Liu, P. L. (2017). Epitaxial growth of ZnGa2O4: A new, deep ultraviolet semiconductor candidate. Crystal Growth & Design, 17 (11), 6071-6078.
    Cheng, Y. C.; Chang, S. P.; Yang, C. P.; Chang, S. J. (2019). Integration of bandgap-engineered double-stacked channel layers with nitrogen doping for high-performance InGaO TFTs. Applied Physics Letters, 114 (19), 192102.
    Anhar Uddin Bhuiyan, A.; Feng, Z.; Johnson, J. M.; Huang, H. L.; Hwang, J.; Zhao, H. (2020). MOCVD Epitaxy of Ultrawide Bandgap β-(Al x Ga1–x) 2O3 with High-Al Composition on (100) β-Ga2O3 Substrates. Crystal Growth & Design, 20 (10), 6722-6730.
    Alaie, Z.; Nejad, S. M.; Yousefi, M. (2015). Recent advances in ultraviolet photodetectors. Materials Science in Semiconductor Processing, 29, 16-55.
    Sang, L.; Liao, M.; Sumiya, M. (2013). A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors, 13 (8), 10482-10518.
    Suresh, A.; Muth, J. (2008). Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Applied Physics Letters, 92 (3), 033502.
    Liao, M.; Sang, L.; Teraji, T.; Imura, M.; Alvarez, J.; Koide, Y. (2012). Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Japanese Journal of Applied Physics, 51 (9R), 090115.
    Sharma, A.; Madhu, C.; Singh, J. (2014). Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review. Int. J. Comput. Appl, 89 (15), 36-40.
    Park, J. S.; Maeng, W. J.; Kim, H. S.; Park, J. S. (2012). Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin solid films, 520 (6), 1679-1693.
    Zhong, C. W.; Tzeng, W. H.; Liu, K. C.; Lin, H. C.; Chang, K. M.; Chan, Y. C.; Kuo, C. C.; Chen, P. S.; Lee, H. Y.; Chen, F. (2013). Effect of ITO electrode with different oxygen contents on the electrical characteristics of HfOx RRAM devices. Surface and Coatings Technology, 231, 563-566.
    Jana, D.; Dutta, M.; Samanta, S.; Maikap, S. (2014). RRAM characteristics using a new Cr/GdO x/TiN structure. Nanoscale research letters, 9 (1), 1-9.
    Jeong, H. Y.; Kim, Y. I.; Lee, J. Y.; Choi, S. Y. (2010). A low-temperature-grown TiO2-based device for the flexible stacked RRAM application. Nanotechnology, 21 (11), 115203.
    Liu, K. C.; Tzeng, W. H.; Chang, K. M.; Chan, Y. C.; Kuo, C. C.; Cheng, C. W. (2010). The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device. Microelectronics Reliability, 50 (5), 670-673.
    Lee, H.; Chen, P.; Wu, T.; Chen, Y.; Wang, C.; Tzeng, P.; Lin, C.; Chen, F.; Lien, C.; Tsai, M. J. (2008). In Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, 2008 IEEE International Electron Devices Meeting, pp 1-4.
    Wang, Z.; Xu, H.; Li, X.; Zhang, X.; Liu, Y.; Liu, Y. (2011). Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance. IEEE electron device letters, 32 (10), 1442-1444.
    Gao, B.; Yu, S.; Xu, N.; Liu, L.; Sun, B.; Liu, X.; Han, R.; Kang, J.; Yu, B.; Wang, Y. (2008). In Oxide-based RRAM switching mechanism: A new ion-transport-recombination model, 2008 IEEE International Electron Devices Meeting, pp 1-4.
    Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A. L. (2009). Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Transactions on Electron Devices, 56 (2), 186-192.
    Lin, C. C.; Tu, B. C.; Lin, C. H.; Tseng, T. Y. (2006). Resistive Switching Mechanisms of V-Doped hboxSrZrO3 Memory Films. IEEE electron device letters, 27 (9), 725-727.

    Li, C. H. (2019). Investigation of Zinc Gallate Thin Film Fabricated by RF Sputtering System and Their Optoelectronics Applications. Master’s degree thesis, National Cheng Kung University.
    Jun, S., Jo, C., Bae, H., Choi, H., Kim, D. H., & Kim, D. M. (2013). Unified subthreshold coupling factor technique for surface potential and subgap density-of-states in amorphous thin film transistors. IEEE Electron Device Letters, 34(5), 641-643.
    Yun, S. J., Koo, J. B., Lim, J. W., & Kim, S. H. (2007). Pentacene-thin film transistors with ZrO2 gate dielectric layers deposited by plasma-enhanced atomic layer deposition. Electrochemical and solid-state letters, 10(3), H90-H93.
    Reynolds, D. C., Look, D. C., Jogai, B., Litton, C. W., Collins, T. C., Harsch, W., & Cantwell, G. (1998). Neutral-donor–bound-exciton complexes in ZnO crystals. Physical Review B, 57(19), 12151.
    Van der Ziel, A. (1986). Noise in solid state devices and circuits. Wiley-Interscience.
    Hsu, M. H. (2019). Investigation of Metal Oxide Optoelectronic Devices Based on InO and ZnO Materials via Sputtering Method. Doctoral degree dissertation, National Cheng Kung University.
    Liu, Y. H., Young, S. J., Ji, L. W., & Chang, S. J. (2015). Ga-doped ZnO nanosheet structure-based ultraviolet photodetector by low-temperature aqueous solution method. IEEE Transactions on Electron Devices, 62(9), 2924-2927.
    Luo, Y. R. (2002). Handbook of Bond Dissociation Energies in Organic Compounds (1st ed.). CRC Press.
    Risbud, A. S., Seshadri, R., Ensling, J., & Felser, C. (2005). Dilute ferromagnetic semiconductors in Fe-substituted spinel ZnGa2O4. Journal of Physics: Condensed Matter, 17(6), 1003.
    Huang, L., Feng, Q., Han, G., Li, F., Li, X., Fang, L., ... & Hao, Y. (2017). Comparison study of β-Ga2O3 photodetectors grown on sapphire at different oxygen pressures. IEEE Photonics Journal, 9(4), 1-8.
    Wu, P., Zhang, J., Lu, J., Li, X., Wu, C., Sun, R., ... & Ye, Z. (2014). Instability induced by ultraviolet light in ZnO thin-film transistors. IEEE Transactions on Electron Devices, 61(5), 1431-1435.
    Jiao, S., Lu, H., Wang, X., Nie, Y., Wang, D., Gao, S., & Wang, J. (2019). The structural and photoelectrical properties of gallium oxide thin film grown by radio frequency magnetron sputtering. ECS Journal of Solid State Science and Technology, 8(7), Q3086.
    Yang, L. C., Wang, R. X., Xu, S. J., Xing, Z., Fan, Y. M., Shi, X. S., Fu, K. & Zhang, B. S. (2013). Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors. Journal of Applied Physics, 113(8), 084501.
    Li, J. Y., Chang, S. P., Hsu, M. H., & Chang, S. J. (2017). Photo-Electrical Properties of MgZnO Thin-Film Transistors with High-k Dielectrics. IEEE Photonics Technology Letters, 30(1), 59-62.
    Li, J. Y., Chang, S. P., Hsu, M. H., & Chang, S. J. (2017). Photo-Electrical Properties of MgZnO Thin-Film Transistors with High-k Dielectrics. IEEE Photonics Technology Letters, 30(1), 59-62.
    Cheng, C. C., Chien, C. H., Luo, G. L., Liu, J. C., Kei, C. C., Liu, D. R., Hsiao, C. N., Yang, C. H. & Chang, C. Y. (2008). Characteristics of atomic-layer-deposited Al2O3 high-k dielectric films grown on Ge substrates. Journal of the Electrochemical Society, 155(10), G203.
    Huang, S., Yang, S., Roberts, J., & Chen, K. J. (2011). Threshold voltage instability in Al2O3/GaN/AlGaN/GaN metal-insulator-semiconductor high-electron mobility transistors. Japanese journal of applied physics, 50(11R), 110202.
    Vitchev, R. G., Pireaux, J. J., Conard, T., Bender, H., Wolstenholme, J., & Defranoux, C. (2004). X-ray photoelectron spectroscopy characterisation of high-k dielectric Al2O3 and HfO2 layers deposited on SiO2/Si surface. Applied surface science, 235(1-2), 21-25.
    Han, J. H., Zhang, R., Osada, T., Hata, M., Takenaka, M., & Takagi, S. (2013). Impact of plasma post-nitridation on HfO2/Al2O3/SiGe gate stacks toward EOT scaling. Microelectronic engineering, 109, 266-269.
    Peelaers, J. B., & Varley, J. S. (2018). Speck, and CG Van de Walle. Appl. Phys. Lett, 112, 242101.
    Cha, J. H., Kim, K. H., Park, Y. S., Park, S. J., & Choi, H. W. (2009). Photoluminescence characteristics of nanocrystalline ZnGa2O4 phosphors obtained at different sintering temperatures. Molecular Crystals and Liquid Crystals, 499(1), 85-407.
    Varley, J. B., Perron, A., Lordi, V., Wickramaratne, D., & Lyons, J. L. (2020). Prospects for n-type doping of (Al x Ga1− x) 2O3 alloys. Applied Physics Letters, 116(17), 172104.
    Panigrahy, B., Aslam, M., & Bahadur, D. (2011). Controlled optical and magnetic properties of ZnO nanorods by Ar ion irradiation. Applied Physics Letters, 98(18), 183109.
    Major, S., Kumar, S., Bhatnagar, M., & Chopra, K. L. (1986). Effect of hydrogen plasma treatment on transparent conducting oxides. Applied Physics Letters, 49(7), 394-396.
    Ko, T. K., Chang, S. J., Sheu, J. K., Shei, S. C., Chiou, Y. Z., Lee, M. L., Shen, S. C., Chang, S. P. & Lin, K. W. (2006). AlGaN/GaN Schottky-barrier UV-B bandpass photodetectors with ITO contacts and LT-GaN cap layers. Semiconductor science and technology, 21(8), 1064.
    Lee, M. L., Sheu, J. K., & Shu, Y. R. (2008). Ultraviolet bandpass Al 0.17 Ga 0.83 N∕ Ga N heterojunction phototransitors with high optical gain and high rejection ratio. Applied Physics Letters, 92(5), 053506.
    Matsuda, T., Umeda, K., Kato, Y., Nishimoto, D., Furuta, M., & Kimura, M. (2017). Rare-metal-free high-performance Ga-Sn-O thin film transistor. Scientific reports, 7(1), 1-7.
    Seo, J. S., Jeon, J. H., Hwang, Y. H., Park, H., Ryu, M., Park, S. H. K., & Bae, B. S. (2013). Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Scientific reports, 3(1), 1-9.
    Kim, U. K., Rha, S. H., Kim, J. H., Chung, Y. J., Jung, J., Hwang, E. S., Lee, J., Park, T.J., Choi, J.H. & Hwang, C. S. (2013). Study on the defects in metal–organic chemical vapor deposited zinc tin oxide thin films using negative bias illumination stability analysis. Journal of Materials Chemistry C, 1(40), 6695-6702.
    Lee, J. S., Chang, S., Koo, S. M., & Lee, S. Y. (2010). High-Performance a-IGZO TFT With ZrO Gate Dielectric Fabricated at Room Temperature. IEEE electron device letters, 31(3), 225-227.
    Hoshino, K., Hong, D., Chiang, H. Q., & Wager, J. F. (2009). Constant-voltage-bias stress testing of a-IGZO thin-film transistors. IEEE Transactions on Electron Devices, 56(7), 1365-1370.
    Chen, H., Cao, Y., Zhang, J., & Zhou, C. (2014). Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nature communications, 5(1), 1-12.
    Choi, S. H., Jang, J. H., Kim, J. J., & Han, M. K. (2012). Low-temperature organic (CYTOP) passivation for improvement of electric characteristics and reliability in IGZO TFTs. IEEE electron device letters, 33(3), 381-383.
    Cheng, Y. C., Chang, S. P., Chang, S. J., Cheng, T. H., Tsai, Y. L., Chiou, Y. Z., & Lu, L. (2019). Stability improvement of nitrogen doping on IGO TFTs under positive gate bias stress and hysteresis test. ECS Journal of Solid State Science and Technology, 8(7), Q3034.
    Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., & Yamakoshi, S. (2012). Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters, 100(1), 013504.
    Walsh, A., Da Silva, J. L., Wei, S. H., Körber, C., Klein, A., Piper, L. F. J., DeMasi, A., Smith, K. E., Panaccione, G., Torelli, P., Payne, D. J., Bourlange, A. & Egdell, R. G. (2008). Nature of the band gap of In 2 O 3 revealed by first-principles calculations and x-ray spectroscopy. Physical review letters, 100(16), 167402.
    King, P. D. C., Veal, T. D., Fuchs, F., Wang, C. Y., Payne, D. J., Bourlange, A., Zhang, H., Bell, G. R., Cimalla, V., Ambacher, O., Egdell, R. G., Bechstedt, F. & McConville, C. F. (2009). Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B, 79(20), 205211.
    Hatayama, S., Sutou, Y., Shindo, S., Saito, Y., Song, Y. H., Ando, D., & Koike, J. (2018). Inverse resistance change Cr2Ge2Te6-based PCRAM enabling ultralow-energy amorphization. ACS applied materials & interfaces, 10(3), 2725-2734.
    Golonzka, O., Alzate, J. G., Arslan, U., Bohr, M., Bai, P., Brockman, J., Buford, B., Connor, C., Das, N., Doyle, B. and Ghani, T. & Fischer, K. (2018, December). MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. In 2018 IEEE International Electron Devices Meeting (IEDM) (pp. 18-1). IEEE.
    Zahoor, F., Zulkifli, T. Z. A., & Khanday, F. A. (2020). Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale research letters, 15(1), 1-26.
    Sivan, M., Li, Y., Veluri, H., Zhao, Y., Tang, B., Wang, X., ... & Thean, A. V. Y. (2019). All WSe 2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nature communications, 10(1), 1-12.
    Su, Y. T., Liu, H. W., Chen, P. H., Chang, T. C., Tsai, T. M., Chu, T. J., Pan, C.H., Wu, C.H., Yang, C.C., Wang, M.C. & Sze, S. M. (2018). A method to reduce forming voltage without degrading device performance in hafnium oxide-based 1T1R resistive random access memory. IEEE Journal of the Electron Devices Society, 6, 341-345.
    Lee, T. S., Lee, N. J., Abbas, H., Lee, H. H., Yoon, T. S., & Kang, C. J. (2020). Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes. ACS Applied Electronic Materials, 2(4), 1154-1161.
    Kim, S., Jung, S., Kim, M. H., Cho, S., & Park, B. G. (2015). Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals. IEICE Transactions on Electronics, 98(5), 429-433.
    Luo, Y. R. (2002). Handbook of Bond Dissociation Energies in Organic Compounds (1st ed.). CRC Press.

    無法下載圖示 校內:2027-01-13公開
    校外:2027-01-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE