簡易檢索 / 詳目顯示

研究生: 蔡湘怡
Tsai, Shiang-Yi
論文名稱: 高紊態空氣噴流衝擊至平圓盤的暫態 共軛熱傳之數值研究
Numerical study of transient conjugate heat transfer in a high turbulence air jet impinging over a flat circular disk
指導教授: 楊玉姿
Yue-Tzu, Yang,
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 暫態共軛熱傳數值計算
外文關鍵詞: Conjugate heat transfer, Transient, Numerical calculation
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要針對高紊態空氣噴流衝擊至平圓盤的暫態共軛熱傳做數值模擬。採用暫態二維圓柱座標、紊流流場與熱傳的數值模擬以驗證理論模式之可行性。本文中紊流統御方程式乃是以控制體積法為基礎,配合有限差分法及冪次法則來離散成差分方程式。對於紊流的結構則是以 紊流模式來描述,並採用SIMPLE運算法則求解壓力-速度結合的問題。
      本文研究的參數包含時間(t=0.1s~200s),紊流雷諾數(Re=16100、23700、29600),圓盤加熱溫度( =373K)或熱通量( =63 、126 、189 ),衝擊高度/噴口直徑(H/D=4、6、10),工作介質為空氣。數值結果顯示雷諾數對暫態衝擊過程的流場特性及熱傳有相當顯著的影響,尤其是考慮衝擊噴流在雷諾數(Re=16100、23700、29600)及衝擊高度(H/D=4、6、10)時的停滯區域。圓盤表面和內部的最大溫度會隨雷諾數增加而減少,即表示圓盤表面的溫度會隨雷諾數增加而產生高溫至低溫的變化。數值結果與文獻中的Siba et al.(2003)的實驗結果比較相當吻合,證實本數值研究之正確性。本文數值預測可以提供對於共軛熱傳效應之物理現象與數值共軛熱傳模式的適用性。

      This study presents the numerical study of transient conjugate heat transfer in a high turbulence air jet impinging over a flat circular disk. The numerical simulation of transient, two dimensional cylindrical coordinate, turbulent flow and heat transfer is adopted to test the accuracy of the theoretical model. The turbulent-governing equation are resolved by Control-Volume based finite-different method with power-low scheme, and the well-known turbulence model to describe the turbulent structure. The SIMPLE algorithm is adopted to solve the pressure-velocity coupling.
      The parameters studied include time (t=0.1s~200s), turbulent flow Reynolds number (Re=16100、23700、29600), heated temperature in circular disk( =373K) or heat flux( =63 、126 、189 ), and orifice to heat-source spacing (H/D=4、6、10), and the working medium is air.The numerical results of transient impinging process indicate that the jet Reynolds numbers has a significant effect on the hydrodynamics and heat transfers,particularly in the stagnation region of an impinging jet under the consideration of jet Reynolds number(Re=16100、23700、29600)and impinging height (H/D=4、6、10). The maximum temperature at the interface and the maximum temperature inside the disk decrease as Reynolds number increase, where as the maximum to minimum temperature at the interface increases with Reynolds numbers. The numerical results have been compared with experimental data of Siba et al. (2003) in the literature. The closed agreement supports the validity of the numerical study. Numerical prediction obtained from this study will provide physical insight into conjugate heat transfer effects and facilitates validation of numerical conjugate heat transfer models.

    中文摘要………...………………………………………………………I 英文摘要……………………………………………………………….II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 表目錄………………………………………………………….……VI 圖目錄………………………………………………………………...VII 符號說明…………………………………………………………….XIII 第一章序論 1-1研究動機及背景………………………………...…………… 1 1-2文獻回顧.…………………………………………………… 2 1-3本文探討之主題及方法.…………………………………… 4 第二章理論分析 2-1 空間流場解析…………………………………………….…6 2-2 紊流模式.…………………………………………………..10 2-2-1k雙方程式模式…………………………………….10 2-3 邊界條件.…………………………………………………..14 2-4 熱傳係數之計算…….……………………………………...17 第三章數值方法……………………………………………………..18 3-1 概述……………………….…………………...…………….18 3-2 格點位置的配置………………………….…...….…………19 3-3 φ之差分方程式…………………...………….……………..20 3-4 、v動量方程式之差分方程式………….……….………26 rzv 3-4-1 壓力修正方程式……………....……………...………26 3-5 收斂條件………………………….…….………...…………29 3-6 差分方程式的解法………………….….………...…………31 3-6-1 數值程序…………………………...……...….……..32 3-6-2 電腦計算時間……………………...……...….…..…33 第四章結果討論.…………………………………………………….35 4-1 格點獨立測試…...…………………………..………36 4-2 暫態流場特性分析……………………………...…………37 4-2-1 速度向量分佈…………………………………….38 4-2-2 紊流動能分佈……………………………………...38 4-3 暫態流場溫度分析…………………..…….…….…….........39 第五章結論與建議……………………………………………….…77 5-1 結論……………………………………………………..….77 5-2 未來研究方向之建議………..…………………..……..….78 參考文獻..……………………………………………………………79

    Agarwal P.K. and Bower W.W., “Navier-Stokes Computations of Turbulent Compressible Two-Dimensional Impinging Jet Flowfields”, AIAA Journal, Vol. 20, No.5, pp. 577-584, 1982.
    Ambatipudi Kiran K. and Muhammad M. Rahman, “Analysis of conjugate heat transfer in microchannel heat sinks”, Numerical Heat Transfer, Part A, Vol. 37, pp. 711-731, 2000.
    Bredberg Jonas and Lars Davidson, “Low-Reynolds Number Turbulence Models:An Approach for Reducing Mesh Sensitivity”, Transactions of the ASME, Vol. 126, pp. 14-21, 2004.
    Bredberg Jonas , Shia-Hui Peng and Lars Dacidson, “An improved K- turbulence model applied to recirculating flows”, International Journal of Heat and Fluid Flow, Vol. 23, pp. 731-743, 2002.
    Bula Antonio J., Muhammad M. Rahman and John E. Leland, “Numerical Modeling of Conjugate Heat Transfer during Impingement of Free Liquid Jet issuing from a slot Nozzle”, Numerical Heat Transfer, Part A, Vol. 38, pp. 45-66, 2000.
    Chiriac Victor A., Alfonso Ortega , “A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 1237-1248, 2002.
    Chung Y. M., Luo K. H., Sandham N. D., “Numerical study of momentum and heat transfer in unsteady impinging jets”, Int. J. Heat Mass Flow, Vol. 23, pp. 592-600, 2002.
    Elison, B., and Webb, B. W., “Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes”, International Journal of Heat and Mass Transfer, Vol. 37, No. 8, pp. 1207-1216, 1994.
    Goldstein, R. J., Sobolik, K. A., and Sool, W. S., “Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat surface”, Transactions of the ASME, Vol. 112, pp. 608-611, 1990.
    Gregoire G. , M. Favre-Marinet and F. Julien Saint Amand , “Modeling of Turbulent Fluid Flow Over a Rough Wall With or Without Suction”, Transactions of the ASME, Vol. 125, pp. 636-642, 2003.
    Launder, B. E. and Spalding, D. B. “The Numerical Computation of Turbulent Flows”, Computer Method in Applied Mechanics and Engineering , Vol. 3 , pp. 269-289, 1974.
    Liu, X., Lienhard, J. H., and Lombara, J. S., “Convective Heat Transfer by Impingement of Circular Liquid Jets”, Journal of Heat Transfer, Vol. 113, No3, pp. 571-582, 1991.
    Ma, C. F., Zhuang, Y., Lee, S. C., and Gomi, T., “Impingement Heat Transfer and Recovery Effect with Submerged Jets of Large Prandtl Number Liquid-II.Initially Laminar Confined Slot Jets”, International Journal of Heat and Mass Transfer, Vol. 40, No. 6, pp. 1491-1500, 1997.
    Metzger, D. E., Cummings, K. N., and Ruby, W. A., “Effects of Prandtl Number on Heat Transfer Characteristics of Impinging Liquid Jets”, Heat Transfer, 1974: Proceedings of the 5th International Heat Transfer Conference, Vol. 2, Hemisphere, Washington, DC, pp. 20-24, 1974.
    Park T.H. , H.G. Choi ,J.Y. Yoo , S.J. Kim , “Streamline upwind numerical simulation of two-dimensional confined impinging slot jets”, International Journal of Heat and Fluid Flow, Vol. 46, pp. 251-262, 2003.
    Patankar, S. V. , “Numerical Heat Transfer and Fluid Flow “, Chap. 5-6, pp. 79-135, 1980.
    Rahman Muhammad M. , Antonio J. Bula and John E. Leland, “Analysis of Transient Conjugate Heat Transfer to a Free Impinging Jet”, JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, Vol. 14 , No. 3, 2000.
    Rokni Masoud and Bengt Sunden, “Numerical investigation of turbulent forced convection in ducts with rectangular and trapezoidal cross-section area by using different turbulence models”, Numerical Heat Transfer, Part A, Vol. 30, pp. 321-346, 1996.
    Sherif, S. A. and Pletcher, R. H., “Measurements of the Thermal Characteristics of Heated Turbulent Jets in Crossflow”, J. Heat Transfer, Vol. 111, pp. 897-903, 1989.
    Siba Erick A. , M. Ganesa-Pillai and Kendall T. Harris A. Haji-Sheikh ,“ Heat Transfer in a High Turbulence Air Jet Impinging Over a flat Circular Disk”, Journal of Heat Transfer, Vol. 125, pp. 257-264, 2003.
    Tong Albert Y. , “A numerical study on the hydrodynamics and heat transfer of a circular liquid jet impinging onto a substrate”, Taylor & Francis, Numerical Heat Transfer, Part A, Vol. 44, pp. 1-19, 2003.
    Varghese Sonu S. and steven H. Frankel, “Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels”, Journal of Biomechanical Engineering , Vol. 125, pp. 445-460, 2003.
    Wang, X. S., Dagan, Z., and Jiji, L. M., “Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature or Wall Heat Flux-1. Solution for the Stagnation Region”, International Journal of Heat and Mass Transfer, Vol. 32, No. 7, pp. 1351-1360, 1989.
    Wang, X. S., Dagan, Z., and Jiji, L. M., “Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature or Wall Heat Flux-2. Solution for the Stagnation Region”, International Journal of Heat and Mass Transfer, Vol. 32, No. 7, pp. 1361-1371, 1989.
    Wolfshtein, M., “Some Solutions of the Plane Turbulent Impinging Jet”, ASME Journal of Basic Engineering, pp. 915-922, 1970.
    Womac, D. J., Ramadhyani, S., Incropera F. P., “Correlating Equation for Impingement Cooling of Small Heat Source With Single Circular Liquid Jets”, Transactions of the ASME, Vol. 115, pp.106-115, 1993.
    Yilbas Bekir Sami , S. Z. Shuja, and M. O. Budair, “Jet Impingement Onto a Hole With Constant Wall Temperature”, Numerical Heat Transfer, Part A, Vol. 43, pp. 843-865, 2003.

    下載圖示 校內:立即公開
    校外:2004-06-29公開
    QR CODE