簡易檢索 / 詳目顯示

研究生: 宋宜綾
Soong, Yih-Ling
論文名稱: Epstein-Barr病毒再活化透過不需要病毒DNA複製的方式活化cGAS/STING調控的訊息途徑
Epstein-Barr virus reactivation triggers a cGAS/STING-mediated signaling pathway independently of viral DNA replication
指導教授: 張堯
Chang, Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 55
中文關鍵詞: EB病毒STINGcGAS病毒DNA
外文關鍵詞: EBV, STING, cGAS, viral DNA
相關次數: 點閱:35下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA感應在宿主細胞對抗DNA病毒的先天免疫反應中扮演重要角色。近幾年研究發現,STING是許多DNA感受器用來啟動下游先天免疫反應的共同中介者。在動物實驗中也證明了STING對於抵抗疱疹病毒感染扮演重要的角色。目前的研究指出人類疱疹病毒中的單純疱疹病毒一型、巨細胞病毒和卡波西氏肉瘤相關疱疹病毒的初次感染或潛伏感染,能夠透過cGAS或IFI16這兩個DNA感受器,活化STING調控的抗病毒途徑。但是對於同屬疱疹病毒的EB病毒在不同感染階段,能否以及如何引起STING途徑的活化仍不清楚。在本研究中,我們發現僅有在Rta誘發EB病毒再活化的情況下,才能夠引起STING途徑的活化,包括促進STING、TBK1和IRF3的磷酸化、IFN-β的表現以及STAT1的磷酸化。進一步藉由抑制STING的表現,我們確認了EB病毒再活化促進TBK1和IRF3磷酸化的現象主要是由STING所調控。我們也利用siRNA抑制cGAS和IFI16的蛋白質表現,發現cGAS對於EB病毒再活化所引起的STING途徑活化扮演重要角色。在利用藥物處理或Zta基因剔除阻止EB病毒DNA複製的情況下,Rta誘發EB病毒的再活化依然能促進STING途徑的活化,使我們排除病毒DNA複製、Zta和需要Zta啟動的基因在其中的重要性,並且推測Rta單獨啟動的病毒基因就能造成STING途徑的活化。最後,我們觀察到EB病毒再活化時,會增加細胞染色體DNA和粒線體DNA出現在細胞質液中,而這些細胞DNA可能是造成cGAS/STING途徑活化的原因。本研究除了幫助我們瞭解EB病毒再活化引起STING途徑活化的可能機制,也暗示cGAS/STING有可能參與EB病毒相關的疾病。

    DNA sensing plays an important role in innate immunity against DNA viruses. Recently, stimulator of interferon genes (STING) was found to be a hub protein downstream of many DNA sensors, and its antiviral functions against herpesviruses have been proven in vivo. Primary or latent infection of herpes simplex virus-1, cytomegalovirus, and Kaposi’s sarcoma-associated herpesvirus can trigger a STING-mediated signaling pathway through DNA sensors including cGAS and IFI16. However, it remains unclear whether and how the pathway is triggered by another gammaherpesvirus: Epstein-Barr virus (EBV). In this study, we found that the STING-mediated signaling pathway can be activated only when EBV is reactivated into the lytic state. Through siRNA-mediated knockdown of specific DNA sensors, we found that cGAS, not IFI16, is important for the STING activation during EBV reactivation. Interestingly, EBV reactivation driven by a viral transactivator Rta can trigger the STING pathway even under treatment with a viral DNA polymerase inhibitor or knockout of a viral gene essential for viral DNA replication, indicating that viral DNA replication is not involved therein. On the other hand, we detected a significant increase of chromosomal DNA and mitochondrial DNA in cytosol upon EBV reactivation, suggesting that cellular DNA may be a stimulator of the cGAS/STING-mediated pathway therein. This study not only reveals a unique mechanism how EBV reactivation can trigger STING activation but also raises a possibility that activation of the cGAS/STING pathway may be linked to EBV-associated diseases.

    中文摘要 I Extended abstract II 誌謝 V 目錄 VI 圖目錄 IX 縮寫索引表 X 緒論 1 一、 Epstein-Barr病毒 1 二、 EB病毒的生活史 1 三、 EB病毒的基因表現與調控 2 四、 細胞內的DNA感受器 3 五、 STING簡介與疾病關聯性 5 六、 STING的活化途徑 5 七、 STING下游調控的途徑 6 八、 DNA感受器/STING與人類疱疹病毒的交互作用 7 九、 研究動機與假設 8 材料與方法 10 一、 材料 10 (1) 細胞株 10 (2) shRNA質體和siRNA 11 (3) 抗體 13 (4) 培養液、藥物和試劑 (組) 14 二、 方法 15 (1) 細胞培養 15 (2) 引發EB病毒再活化及藥物處理 16 (3) 穩定細胞株建立:慢病毒轉導 16 (4) siRNA轉染 17 (5) Poly(dA:dT) 轉染 17 (6) 免疫西方墨點法 17 (7) mRNA表現量分析 18 (8) 細胞內EB病毒基因體複製數量分析 19 (9) 細胞內及細胞質液內染色體DNA和粒線體DNA分析 19 (10) 即時定量聚合酶連鎖反應 (real time q-PCR) 20 實驗結果 22 一、 外源性的dsDNA可以在TW01鼻咽癌細胞中引起STING/TBK1/IRF3的活化以及IFN-β的表現 22 二、 Rta引發的EB病毒再活化,而非單獨Rta或潛伏感染,能刺激STING/TBK1/IRF3的活化以及IFN-β的表現 23 三、 EB病毒再活化所引起的TBK1/IRF3的磷酸化是由STING所調控的 24 四、 EB病毒再活化所引發的STING調控訊息途徑需要cGAS而非IFI16的表現 25 五、 STING調控訊息途徑的活化不需要病毒DNA複製 26 六、 STING調控訊息途徑的活化不需要Zta的表現 27 七、 EB病毒的再活化會增加染色體DNA和粒線體DNA出現在細胞質液 28 討論 30 一、 STING的活化指標 30 二、 人類疱疹病毒活化STING方式的比較 31 三、 EB病毒活化cGAS/STING途徑的可能機制 34 四、 EB病毒可能具有能力抵抗STING途徑下游的第一型干擾素反應 36 五、 EB病毒活化STING的其他可能意義 36 參考資料 39 圖 45

    Abe, T. and G. N. Barber et al. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol. 88(10): 5328-5341. (2014).
    Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 503: 530-534. (2013).
    Adams, A. et al. Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol. 61(5): 1743-1746. (1987).
    Aguirre, S. et al. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol. 2: 17037. (2017).
    Ahn, J. et al. STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A. 109(47): 19386-19391. (2012).
    Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat Commun. 5: 5166. (2014).
    Allen, U. et al. Epstein-Barr virus infection in transplant recipients: Summary of a workshop on surveillance, prevention and treatment. Can J Infect Dis. 13(2): 89-99. (2002).
    Andrade, W. A. et al. Group B streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe. 20(1): 49-59. (2016).
    Ansari, M. A. et al. Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells. J Virol. 87(15): 8606-8623. (2013).
    Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 478(7370): 515-518. (2011).
    Castanier, C. and D. Arnoult et al. Mitochondrial localization of viral proteins as a means to subvert host defense. Biochim Biophys Acta. 1813(4): 575-583. (2011).
    Chang, C. W. et al. Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins. J Virol. 86(15): 8072-8085. (2012).
    Chien, Y. C. et al. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med. 345(26): 1877-1882. (2001).
    Cohen, J. I. and K. Lekstrom et al. Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol. 73(9): 7627-7632. (1999).
    Diner, B. A. et al. Interactions of the antiviral factor interferon gamma-inducible protein 16 (IFI16) mediate immune signaling and herpes simplex virus-1 immunosuppression. Mol Cell Proteomics. 14(9): 2341-2356. (2015).
    Glaser, R. et al. Stress-related activation of Epstein-Barr virus. Brain Behav Immun. 5(2): 219-232. (1991).
    Gram, A. M. et al. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure. Mol Immunol. 91: 225-237. (2017).
    Gu, L. et al. Human DEAD box helicase 3 couples IkappaB kinase epsilon to interferon regulatory factor 3 activation. Mol Cell Biol. 33(10): 2004-2015. (2013).
    Honess, R. W. and D. H. Watson et al. Herpes simplex virus resistance and sensitivity to phosphonoacetic acid. J Virol. 21(2): 584-600. (1977).
    Horan, K. A. et al. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol. 190(5): 2311-2319. (2013).
    Huang, S. Y. et al. Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3sigma arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol. 93(Pt 1): 139-149. (2012).
    Hurst, T. P. and G. Magiorkinis et al. Activation of the innate immune response by endogenous retroviruses. J Gen Virol. 96(Pt 6): 1207-1218. (2015).
    Ihle, J. N. and I. M. Kerr et al. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11(2): 69-74. (1995).
    Iqbal, J. et al. Histone H2B-IFI16 recognition of nuclear herpesviral genome induces cytoplasmic interferon-beta responses. PLoS Pathog. 12(10): e1005967. (2016).
    Ishikawa, H. and G. N. Barber et al. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 455(7213): 674-678. (2008).
    Ishikawa, H. et al. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 461(7265): 788-792. (2009).
    Jin, Y. B. et al. Changes of plasma cytokines and chemokines expression level in nasopharyngeal carcinoma patients after treatment with definitive intensity-modulated radiotherapy (IMRT). PLoS One. 12(2): e0172264. (2017).
    Kawai, T. and S. Akira et al. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 34(5): 637-650. (2011).
    Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe. 9(5): 363-375. (2011).
    Konno, H. et al. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 155(3): 688-698. (2013).
    Laichalk, L. L. and D. A. Thorley-Lawson et al. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 79(2): 1296-1307. (2005).
    Lan, Y. Y. et al. Epstein-Barr virus Zta upregulates matrix metalloproteinases 3 and 9 that synergistically promote cell invasion in vitro. PLoS One. 8(2): e56121. (2013).
    Lemos, H. et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 76(8): 2076-2081. (2016).
    Li, T. et al. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe. 14(5): 591-599. (2013).
    Liu, P. et al. Expression of indoleamine 2,3-dioxygenase in nasopharyngeal carcinoma impairs the cytolytic function of peripheral blood lymphocytes. BMC Cancer. 9: 416. (2009).
    Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 347(6227): aaa2630. (2015).
    Liu, W. L. et al. Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-kappaB pathways: impairment in T cell functions. J Virol. 88(12): 6660-6671. (2014).
    Loo, Y. M. and M. Gale, Jr. et al. Immune signaling by RIG-I-like receptors. Immunity. 34(5): 680-692. (2011).
    Lossius, A. et al. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis-association and causation. Viruses. 4(12): 3701-3730. (2012).
    Ma, X. et al. Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci U S A. 109(24): 9378-9383. (2012).
    Ma, Z. et al. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci U S A. 112(31): E4306-4315. (2015).
    Margolis, S. R. et al. Evolutionary Origins of cGAS-STING Signaling. Trends Immunol. 38(10): 733-743. (2017).
    Morrison, T. E. et al. Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity. 15(5): 787-799. (2001).
    Murata, T. et al. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol. 58(6): 307-317. (2014).
    Murphy, K. et al. Janeway's immunobiology. New York, Garland Science, 88-96. (2017)
    Pfaller, M. A. et al. 醫用微生物學. Taiwan, Elsevier Taiwan LLC. (2011)
    Nowag, H. et al. Macroautophagy Proteins Assist Epstein Barr Virus Production and Get Incorporated Into the Virus Particles. EBioMedicine. 1(2-3): 116-125. (2014).
    Paijo, J. et al. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells. PLoS Pathog. 12(4): e1005546. (2016).
    Perl, A. et al. Endogenous retroviral pathogenesis in lupus. Curr Opin Rheumatol. 22(5): 483-492. (2010).
    Phan, A. T. et al. Epstein-Barr virus latency type and spontaneous reactivation predict lytic induction levels. Biochem Biophys Res Commun. 474(1): 71-75. (2016).
    Prabakaran, T. et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 37(8): e97858. (2018).
    Ragoczy, T. et al. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol. 72(10): 7978-7984. (1998).
    Shu, C. et al. Structural insights into the functions of TBK1 in innate antimicrobial immunity. Structure. 21(7): 1137-1148. (2013).
    Sun, B. et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep. 7(1): 3594. (2017).
    Sun, L. et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339(6121): 786-791. (2013).
    Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A. 106(21): 8653-8658. (2009).
    Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 448(7152): 501-505. (2007).
    Tsurumi, T. et al. Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol. 15(1): 3-15. (2005).
    Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 11(11): 997-1004. (2010).
    Wang, H. B. et al. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun. 6: 6240. (2015).
    Wang, J. T. et al. Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol. 83(4): 1856-1869. (2009).
    West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 520(7548): 553-557. (2015).
    Woodward, J. J. et al. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science. 328(5986): 1703-1705. (2010).
    Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 339(6121): 826-830. (2013).
    Young, L. S. and P. G. Murray et al. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 22(33): 5108-5121. (2003).
    Young, L. S. and A. B. Rickinson et al. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 4(10): 757-768. (2004).
    Zhang, H. et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat Microbiol. 3(2): 1-8. (2018).
    Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 29(4): 538-550. (2008).

    下載圖示 校內:2023-07-18公開
    校外:2023-07-18公開
    QR CODE