| 研究生: |
黃芷妤 Huang, Chih-Yu |
|---|---|
| 論文名稱: |
以原子力顯微鏡分析富砷環境分離菌之機械及電性質 Analysis of the mechanical and electrical properties of environmental bacterial isolate under arsenic exposure using Atomic force microscopy |
| 指導教授: |
劉浩志
Liu, Bernard Haochih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 芽孢桿菌 、葡萄球菌 、砷 、機械性質 、電性質 、原子力顯微鏡 |
| 外文關鍵詞: | Lysinibacillus, Staphylococcus, arsenic, mechanical properties, atomic force microscope |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣西南沿海地帶在1950年代末期,北門、布袋、學甲和義竹曾發生嚴重的重金屬中毒事件,由於當地居民因長期飲用地下水,而當地地下水有高含量的砷,導致許多居民的下肢周邊血管變異,使患者雙足發黑,也就是我們熟知的「烏腳病」。
砷的污染來源有很多種,也許是河流的中、上游工廠排放廢氣物而引起下游直接汙染,也有可能是本身地質環境的沉積物所造成的;不論砷的來源為何,只要經由空氣、皮膚或是食用到人體內,長期由於身體無法代謝並持續堆積,都會對人體造成嚴重的迫害,因此如何對砷汙染作處理並降低濃度是一件不可忽視之事。
本研究從台南北門以及嘉義布袋鎮個別分離出一種葡萄球菌和芽孢桿菌,並發現此兩種細菌對砷有專一性的抗性,為此此研究針對砷與細菌之間的反應變化,利用原子力顯微鏡對細菌的表面機械性質做奈米級的分析,以及量測細菌表面的電性質功函數,並觀測細菌內部變化以及細菌吸附砷的能力,仿真實環境下細菌的存活率及生長曲線,並使用液相連續掃描方式觀察細菌的連續反應。
由數據顯示,細菌在接觸有重金屬環境下有週期性的反應,以及細菌內外皆有重金屬吸收的痕跡,並對砷做價數分析,探討此菌是否會分泌氧化還原酶幫助環境降低毒性;而電性方面細菌會因細菌表面產生化學變化導致功函數有所變動;除此之外,此兩種細菌雖對砷有抗性,但對於濃度還是有一定之限制,重金屬濃度若超過一定的量,細菌無法代謝及解毒,便無法在此環境下生存;此研究利用量測出的數據及資料來分別解釋兩種不同細菌針對重金屬反應的機制及變化。
與以往不同的是,過去文獻已探討各種細菌對重金屬具有高抗性和氧化還原性質,然而,重金屬對這些生物體的生物學效應在分子和生理學已經有較完善之研究。但細菌表面行為並無深入之討論,而微觀技術的最新進展為細菌形態變化提供了創新的見解,因此,此研究著重探討在重金屬在砷影響下的細菌機械性質和電性質;產生高分辨率的基於細胞反應的特性圖像。
This study isolated Staphylococcus sp. and Lysinibacillus sp. found that the two bacteria had specific resistance to arsenic. For this reason, we aimed at the reaction between arsenic and bacteria by using an atomic force microscope. The microscope performs analysis of mechanical properties and measures the electrical properties of the bacteria surface in nanometer scale. It also observes the organelle changes, the ability of bacteria to absorb arsenic, the survival rate and growth curve of the bacteria under the real environment. The continuous reaction of the bacteria was observed using a liquid continuous scanning method. The bacteria have periodic reactions in contact with heavy metals, and there are traces of heavy metals absorbed inside and outside the bacteria. The valence analysis of arsenic is performed to determine whether the bacterium will produce oxidoreductase and help the environment to reduce toxicity; Electrically, bacteria may cause changes in the work function due to chemical changes on the surface of the bacteria; In addition, although these two bacteria are resistant to arsenic, there are certain restrictions on the concentration when it exceeds a certain amount. This study explains the mechanism and changes of two unknown bacteria responses to heavy metals.
[1] J. Kim and M. M. Benjamin, "Modeling a novel ion exchange process for arsenic and nitrate removal," Water research, vol. 38, no. 8, pp. 2053-2062, 2004.
[2] P. B. Key and G. I. Scott, "Acute toxicity of the mosquito larvicide, Bacillus sphaericus, to the grass shrimp, Palaemonetes pugio, and mummichog, Fundulus heteroclitus," Bulletin of environmental contamination and toxicology, vol. 49, no. 3, pp. 425-430, 1992.
[3] P. Baumann, M. A. Clark, L. Baumann, and A. H. Broadwell, "Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins," Microbiological reviews, vol. 55, no. 3, pp. 425-436, 1991.
[4] W. R. Kellen, T. B. Clark, J. E. Lindegren, B. C. Ho, M. H. Rogoff, and S. Singer, "Bacillus sphaericus Neide as a pathogen of mosquitoes," Journal of invertebrate pathology, vol. 7, no. 4, pp. 442-448, 1965.
[5] S. Singer, "Insecticidal activity of recent bacterial isolates and their toxins against mosquito larvae," Nature, vol. 244, no. 5411, pp. 110-111, 1973.
[6] Department of Pharmacology. (2017). Atomic Force Microscope. Available: https://pharm.virginia.edu/facilities/atomic-force-microscope-afm/
[7] B. E. Murphy, "The physico-chemical properties of fullerenes and porphyrin derivatives deposited on conducting surfaces," Trinity College Dublin, 2014.
[8] S. Magonov, "Expanding atomic force microscopy with hybrid mode imaging," Application Mode, NT-MDT, 2013.
[9] B. Ohler, "Practical advice on the determination of cantilever spring constants," Bruker Application Note# AN94, vol. 1, 2007.
[10] W. C. Young and R. G. Budynas, Roark's formulas for stress and strain. McGraw-Hill New York, 2002.
[11] P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, P. Vashishta, and S. Saini, "Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study," Applied Physics Letters, vol. 82, no. 1, pp. 118-120, 2003.
[12] J. L. Hutter and J. Bechhoefer, "Calibration of atomic‐force microscope tips," Review of Scientific Instruments, vol. 64, no. 7, pp. 1868-1873, 1993.
[13] J. Zhu, Q. Li, W. Jiao, H. Jiang, W. Sand, J. Xia, X. Liu, W. Qin, G. Qiu, and Y. Hu, "Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite," Colloids and Surfaces B: Biointerfaces, vol. 94, pp. 95-100, 2012.
[14] P.-H. Puech, K. Poole, D. Knebel, and D. J. Muller, "A new technical approach to quantify cell–cell adhesion forces by AFM," Ultramicroscopy, vol. 106, no. 8, pp. 637-644, 2006.
[15] Y. F. Dufrêne, "Sticky microbes: forces in microbial cell adhesion," Trends in microbiology, vol. 23, no. 6, pp. 376-382, 2015.
[16] A. Razatos, Y.-L. Ong, M. M. Sharma, and G. Georgiou, "Molecular determinants of bacterial adhesion monitored by atomic force microscopy," Proceedings of the National Academy of Sciences, vol. 95, no. 19, pp. 11059-11064, 1998.
[17] Y.-L. Ong, A. Razatos, G. Georgiou, and M. M. Sharma, "Adhesion Forces between E. c oli bacteria and biomaterial surfaces," Langmuir, vol. 15, no. 8, pp. 2719-2725, 1999.
[18] W. R. Bowen, R. W. Lovitt, and C. J. Wright, "Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae," Journal of colloid and interface science, vol. 237, no. 1, pp. 54-61, 2001.
[19] A. C. Chang, J.-D. Liao, and B. H. Liu, "Practical assessment of nanoscale indentation techniques for the biomechanical properties of biological materials," Mechanics of Materials, vol. 98, pp. 11-21, 2016.
[20] H. Hertz, "Über die Berührung fester elastischer Körper," Journal für die reine und angewandte Mathematik, vol. 92, pp. 156-171, 1882.
[21] I. N. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," International journal of engineering science, vol. 3, no. 1, pp. 47-57, 1965.
[22] B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, "Effect of contact deformations on the adhesion of particles," Journal of Colloid and interface science, vol. 53, no. 2, pp. 314-326, 1975.
[23] J. M. Wallace, "Applications of atomic force microscopy for the assessment of nanoscale morphological and mechanical properties of bone," Bone, vol. 50, no. 1, pp. 420-427, 2012.
[24] F. Serry, K. Kjoller, J. Thornton, R. Tench, and D. Cook, "Electric force microscopy, surface potential imaging, and surface electric modification with the atomic force microscope (AFM)," VEECO DI Technique Sheet, AN27, Rev. A1, 6/1/04, 2004.
[25] J. J. Bozzola and L. D. Russell, Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning, 1999.
[26] Tina. (2007). 激光扫描共聚焦显微镜的原理和应用. Available: http://www.microimage.com.cn/xwjs/2007/1023/article_10.html
[27] D. C. Adriano, "Arsenic," in Trace elements in terrestrial environments: Springer, 2001, pp. 219-261.
[28] B. L. Batista, J. M. Souza, S. S. De Souza, and F. Barbosa Jr, "Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption," Journal of hazardous materials, vol. 191, no. 1-3, pp. 342-348, 2011.
[29] P. Williams, A. Price, A. Raab, S. Hossain, J. Feldmann, and A. A. Meharg, "Variation in arsenic speciation and concentration in paddy rice related to dietary exposure," Environmental Science & Technology, vol. 39, no. 15, pp. 5531-5540, 2005.
[30] Y.-G. Zhu, G.-X. Sun, M. Lei, M. Teng, Y.-X. Liu, N.-C. Chen, L.-H. Wang, A. Carey, C. Deacon, and A. Raab, "High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice," Environmental Science & Technology, vol. 42, no. 13, pp. 5008-5013, 2008.
[31] W. E. Kloos and K. H. Schleifer, "Isolation and Characterization of Staphylococci from Human Skin II. Descriptions of Four New Species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans1," International Journal of Systematic and Evolutionary Microbiology, vol. 25, no. 1, pp. 62-79, 1975.
[32] M. C. Montel, R. Talon, M. Cantonnet, and J. Fournaud, "Identification of Staphylococcus from French dry sausage," Letters in applied microbiology, vol. 15, no. 2, pp. 73-77, 1992.
[33] R. Talon, M. Montel, G. Gandemer, M. Viau, and M. Cantonnet, "Lipolysis of pork fat by Staphylococcus warneri, S. saprophyticus and Micrococcus varians," Applied microbiology and biotechnology, vol. 38, no. 5, pp. 606-609, 1993.
[34] M. Montel, R. Talon, J. Berdagué, and M. Cantonnet, "Effects of starter cultures on the biochemical characteristics of French dry sausages," Meat science, vol. 35, no. 2, pp. 229-240, 1993.
[35] F. Yilmaz, N. Orman, G. Serim, C. Kochan, A. Ergene, and B. Icgen, "Surface water-borne multidrug and heavy metal-resistant Staphylococcus isolates characterized by 16s rDNA sequencing," Bulletin of environmental contamination and toxicology, vol. 91, no. 6, pp. 697-703, 2013.
[36] C. Vázquez, T. Iglesias, L. Mourelle, C. Gómez, N. Lago, M. Mato, and J. Legido, "Ultrasonic bacterial treatment of mineral waters: a study on S. epidermidis, S. warneri, P. aeruginosa and P. mirabilis," Environmental Earth Sciences, vol. 73, no. 6, pp. 2863-2868, 2015.
[37] A. P. F. Nunes, L. M. Teixeira, N. L. P. Iorio, C. C. R. Bastos, L. de Sousa Fonseca, T. Souto-Padrón, and K. R. N. Dos Santos, "Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: characterisation of glycopeptide susceptibility profiles and cell wall thickening," International journal of antimicrobial agents, vol. 27, no. 4, pp. 307-315, 2006.
[38] A. G. Porter, E. W. Davidson, and J.-W. Liu, "Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes," Microbiological Reviews, vol. 57, no. 4, pp. 838-861, 1993.
[39] R. Vaidyanathan and T. W. Scott, "Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California," Vector-Borne and Zoonotic Diseases, vol. 7, no. 2, pp. 193-198, 2007.
[40] H. Nishiwaki, K. Nakashima, C. Ishida, T. Kawamura, and K. Matsuda, "Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus," Applied and environmental microbiology, vol. 73, no. 10, pp. 3404-3411, 2007.
[41] S. Mathavan, A. Velpandi, and J. Johnson, "Sub-toxic effects of Bacillus sphaericus 1593 M on feeding growth and reproduction of Laccotrephes griseus (Hemiptera: Nepidae)," Experimental biology, vol. 46, no. 3, pp. 149-153, 1987.
[42] M. Brown, T. Watson, J. Carter, D. Purdie, and B. Kay, "Toxicity of VectoLex (Bacillus sphaericus) products to selected Australian mosquito and nontarget species," Journal of economic entomology, vol. 97, no. 1, pp. 51-58, 2004.
[43] L. A. Lacey, "Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control," Journal of the American Mosquito Control Association, vol. 23, no. sp2, pp. 133-163, 2007.
[44] F. Mulligan III, C. Schaefer, and T. Miura, "Laboratory and field evaluation of Bacillus sphaericus as a mosquito control agent," Journal of Economic Entomology, vol. 71, no. 5, pp. 774-777, 1978.
[45] 宋泉颖, 徐俊, and 张宇, "球形赖氨酸芽孢杆菌 (Lysinibacillus sphaericus) 和嗜冷芽孢八叠球菌 (Sporosarcina psychrophila) 介导形成白云石晶体," 微生物学通报, vol. 41, no. 10, pp. 2155-2165, 2014.
[46] L. C. Lozano and J. Dussán, "Metal tolerance and larvicidal activity of Lysinibacillus sphaericus," World Journal of Microbiology and Biotechnology, vol. 29, no. 8, pp. 1383-1389, 2013.
[47] T. D. Peña-Montenegro and J. Dussán, "Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b. 31," Standards in genomic sciences, vol. 9, no. 1, p. 42, 2013.
[48] G. Ji and S. Silver, "Bacterial resistance mechanisms for heavy metals of environmental concern," Journal of industrial microbiology, vol. 14, no. 2, pp. 61-75, 1995.
[49] F. S. Islam, A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee, and J. R. Lloyd, "Role of metal-reducing bacteria in arsenic release from Bengal delta sediments," Nature, vol. 430, no. 6995, pp. 68-71, 2004.
[50] A. J. Lee, M. Szymonik, J. K. Hobbs, and C. Wälti, "Tuning the translational freedom of DNA for high speed AFM," Nano Research, vol. 8, no. 6, p. 1811, 2015.
[51] H. A. Eskandarian, P. D. Odermatt, J. X. Ven, M. T. Hannebelle, A. P. Nievergelt, N. Dhar, J. D. McKinney, and G. E. Fantner, "Division site selection linked to inherited cell surface wave troughs in mycobacteria," Nature microbiology, vol. 2, no. 9, p. 17094, 2017.
[52] B. H. Liu and L.-C. Yu, "In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm," Colloids and Surfaces B: Biointerfaces, vol. 150, pp. 98-105, 2017.
[53] R. L. Meyer, X. Zhou, L. Tang, A. Arpanaei, P. Kingshott, and F. Besenbacher, "Immobilisation of living bacteria for AFM imaging under physiological conditions," Ultramicroscopy, vol. 110, no. 11, pp. 1349-1357, 2010.
[54] C.-C. Wu, T.-M. Pan, C.-S. Wu, L.-C. Yen, C.-K. Chuang, S.-T. Pang, Y.-S. Yang, and F.-H. Ko, "Label-free detection of prostate specific antigen using a silicon nanobelt field-effect transistor," Int. J. Electrochem. Sci, vol. 7, no. 5, pp. 4432-4442, 2012.
[55] SWDSOP. (2004). Negative Staining Available: http://web.path.ox.ac.uk/~bioimaging/bitm/instructions_and_information/em/neg_stain.pdf
[56] Y. Ma, M. Rajkumar, C. Zhang, and H. Freitas, "Beneficial role of bacterial endophytes in heavy metal phytoremediation," Journal of environmental management, vol. 174, pp. 14-25, 2016.
[57] J. Wingender, T. R. Neu, and H.-C. Flemming, "What are bacterial extracellular polymeric substances?," in Microbial extracellular polymeric substances: Springer, 1999, pp. 1-19.
[58] Y. Han and S. Wang, "Arsenic resistance mechanisms in microbes and their roles in arsenic geochemical cycling-A review," Wei sheng wu xue bao= Acta microbiologica Sinica, vol. 56, no. 6, pp. 901-910, 2016.
[59] Y.-G. Zhu, M. Yoshinaga, F.-J. Zhao, and B. P. Rosen, "Earth abides arsenic biotransformations," Annual review of earth and planetary sciences, vol. 42, pp. 443-467, 2014.
[60] (2013). Commercial AFMs Basic Principles of AFM. Available: http://www.nanofunction.org/p/commercialafms
校內:2023-09-01公開