| 研究生: |
蔡孟憲 Tsai, Meng-Shian |
|---|---|
| 論文名稱: |
基板圖形對二硒銅銦薄膜及銦硒化物形成效應之研究 Study of substrate structure effects on the formation of CuInSe2 and InxSey thin film |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 微影蝕刻 、二硒銅銦 、黃銅礦 、結晶相 、共蒸鍍 、薄膜太陽能電池 |
| 外文關鍵詞: | Photolithography, CuInSe2, Chalcopyrite, Preferred orientation, Co-evaporation, Thin film solar cell |
| 相關次數: | 點閱:116 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係研究利用本論文係研究利用不同的圖形和線寬的基板對生長二硒銅銦薄膜的效應。吾人利用微影製程並採用濕式蝕刻將圖形轉移至基板上。經過優化過後的微影製程,吾人利用濺鍍的方式將厚度約為150奈米的鉬背電極沉積在有圖形的基板上,再以兩階段蒸鍍的方式將二硒銅銦薄膜沉積於背電極上。
為了分析出圖形機板二硒銅銦薄膜生長的效應,吾人利用XRD來研究薄膜的結晶方向。由實驗的結果指出,圖形P2 形成最高結晶強度CIS(220)/CIS(112)之比例,而就整體而言,其改善的順序為P2>P1>P4>P3>NP。此外,吾人同時發現基板圖形之改變對於二銦化三硒的結晶方向有明顯的影響,將TEM的影像經過快速傅立葉轉換,吾人發現可以在蝕刻出來凹槽底部發現薄膜為{100}矩形堆積而平坦的位置則為{001}六角堆積。本文還指出造成改變的原因源至於二銦化三硒的薄膜而非鉬薄膜所造成的影響。
In this thesis, we investigate the influences of different scales and shapes pattern substrates on the formation of CIS. To transfer the pattern structures to the substrates, we adopt photolithography process with wet etching. After optimizing lithography process, we sputter about 150 nm of thickness of Mo film on patterned substrates followed by using “two step co-evaporation” method to form CIS.
In order to analyze the influences of substrate structures effects, we used X-ray diffraction (XRD) to examine crystalline orientation. The results show that pattern P2 achieved highest I(220)/I(112) ratio based on XRD data and the order of improvement is P2>P1>P4>P3>NP. Furthermore, we also found that substrate texturing strongly influences In2Se3 preferred phase formation. By using fast Fourier transform electron-diffraction (FTED) patterns obtained from the TEM images, we figure out that In2Se3 layer stacking with {001} hexagonal nature and {100} rectangular character can be observed from a flat area and inside a cavity, respectively. We also indicated that the change is due to the precursor of In2Se3 rather than the effect of Mo film.
Reference Ch.1:
[1] Renewable Energy Network for 21st Century (REN21). Renewables Global Status Report: 2009 Update p. 12, 2009.
[2] H.Hahn, G. Frank, W. Klinger, Meyer AD, G Stöerger ,Untersuchungen über ternäre.Chalkogenide , V. Z. Anorg. Allg. Chem. pp.228-230, 1953
[3] Mickelsen, R.A. and chen, W.S., High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cell. Appl. Phys. Lett. Vol. 36, P371, 1980.
[4] Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi, 19•9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor, Prog.Photovolt: Res. Appl. 16 235-239, 2008
Reference Ch.2:
[1] David L. King, jay A. Kratochvil, and William E. Boyson, Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors, Photovoltaic Specialists Conference, pp. 1-12, 1997.
[2] Antonio Luque and Steven Hegedus, Handbook of Photovoltaic Science and Engineering. John Wiley and Sons. ISBN 047149,1969.
[3] Jenny Nelson. The Physics of Solar Cells. Chapter 2, Imperial College Press. 2003.
[4] ASTM G 173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM International, 2003.
[5] David L. King, jay A. Kratochvil, and William E. Boyson, Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors, Photovoltaic Specialists Conference, pp. 1-12, 1997.
[6] Jenny Nelson, The Physics of Solar Cells, Chapter 1, 2003.
[7]T.Godecke , Haalboom, T., Ernst, F, Z. Metallkd. Phase Equilibria of Cu-In-Se, 91, 622-662, 2000.
[8] T. Haalboom, T. Goedecke, F. Ernst, M. Ruehle, R. Herberholz, H.W. Schock, C. Beilharz and K.W. Benz, Ternary and Multinary Compounds ,152, p. 249, 1998.
[9] R. Herberholtz, U. Rau, H. W. Schock,Haalboom, T., Godecke, T., Ernst, F., Beilharz, C., Benz, KW, and Cahen, D., Eur., Phase segregation, Cu migration and junction formation in Cu(In, Ga)Se2, Phys. J. AP 6, 131, 1999.
[10 ]P. Migliorato1, J. L. Shay1, H. M. Kasper2, and Sigurd Wagner1 , Analysis of the electrical and luminescent properties of CuInSe2, J. Appl. Phys. 46, 1777, 1975.
[11]R. Noufi, R. Axton, C. Herrington, and S. K. Deb, Electronic properties versus composition of thin films of CuInSe2 ,Appl. Phys. Lett. 45, 668, 1984.
[12] S. M. Wasim, Transport properties of CuInSe2, Sol. Cells. 16, 289, 1986.
Reference Ch.3:
[1] W. Kern , et al., Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology, and Applications , Noyes,Park Ridge,NJ,1993.
[2] Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication Oxford University Press,2nd ed.,2001.
[3] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Ronig, C. E. Lyman, C. Fiori, and E.Lifshin, Scanning electron microscope and X-ray microanalysis :a text for biologists, material scientists, and geologists, Plenum Press, 2nd ed., New York, 1992.
Reference Ch.5:
[1] T. Schlenker, V. Laptev, H.W. Schock, J.H. Werner, Substrate influence on Cu(In,Ga)Se2 film texture, Thin Solid Films 480-481 29-32, 2005.
[2] M.A. Contreras, B. Egaas, D. King, A. Swartzlander, T. Dullweber, Texture manipulation of CuInSe2 thin films, Thin Solid Films 361-362 167-171, 2000.
[3] S. Chaisitsak, A. Yamada, M. Konagai, Preferred orientation control of Cu(In1-xGax)Se2 (x ≈ 0.28) thin films and its influence on solar cell characteristics, Jpn. J. Appl. Phys. 41 507-513, 2002.
[4] T. Mise, T. Nakada, Microstructural properties of (In,Ga)2Se3 precursor layers for efficient CIGS thin-film solar cells, Sol. Energy Mater. Sol. Cells 93 1000-1003, 2009.
[5] G. Hanna, J. Mattheis, V. Laptev, Y. Yamamoto, U. Rau, H.W. Schock, Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films, Thin Solid Films 431-432 31-36, 2003.
[6] A. Rocket, J.S. Britt, T. Gillespie, C. Marshall, M.M. Al Jassim, F. Hasoon, R. Matson, B. Basol, Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, Thin Solid Films 372 212-217, 2000.
[7] H. Peng, C. Xie, D.T. Schoen, Y. Cui, Large anisotropy of electrical properties in layerstructured In2Se3 nanowires, Nano Letters 8 1511-1516, 2008.