| 研究生: |
邱俊榕 Chiu, Chun-Jung |
|---|---|
| 論文名稱: |
水雷基本型PDMS雙穩撓性機構於夾爪之應用 “Waterbomb base” PDMS bistable compliant mechanism in gripper applications |
| 指導教授: |
張仁宗
Chang, Ren-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 水雷基本型 、雙穩 、軟夾爪 、PDMS |
| 外文關鍵詞: | waterbomb base, bistable, soft gripper, PDMS |
| 相關次數: | 點閱:108 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「水雷基本型(Waterbomb base)」為一單頂點雙穩摺紙機構(Bistable origami mechanism),由於其簡單之幾何結構以及良好之雙穩特性,顯現其廣泛之工程應用前景,但目前其實際應用仍為數不多,本文將應用「水雷基本型」於軟夾爪之製造。軟夾爪利用材料撓性以達成夾持之功能,具有夾持物體之適應性以及強健性,但其夾持速度仍存在著很大的限制,因此在高動態夾持任務上仍是一大挑戰。本文藉由以3D列印設計模具來製造出由「聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)」組成之「水雷基本型(Waterbomb base)」,將此結構與自製之致動器和端效器結合,製造出含有雙穩特性之軟夾爪系統,其雙穩機制可使其應變能儲存於軟夾爪,藉由其應變能之儲存與釋放來驅動軟夾爪,可達到快速夾持之目的。為了達成雙穩機制,透過致動器轉換其開啟與閉合之狀態,並可減少其能量之消耗。本文包含軟夾爪系統之設計、製造以及測試。為了瞭解其整體之動態行為與特性,本研究以有限元素分析法得出其核心結構「水雷基本型」於軟夾爪系統之動態模擬,並將其與理論模型、實際測試相互比較與驗證。
"Waterbomb base" is a single vertex bistable origami mechanism. Due to its simple geometric structure and great bistable property, it has a wide range of engineering application prospects, but there is still a few practical application for it so far. This paper will apply "waterbomb base" to the manufacturing of soft grippers. The soft grippers utilize compliance to achieve impressive grasping performances with great adaptability and robustness. However, they are still limited by their speed of grasping. Hence, their usage have been restricted in highly dynamic grasping tasks. In this paper, "waterbomb base" made of Polydimethylsiloxane (PDMS) is manufactured by designing the mold with 3D printing. By combining this structure with the self-manufactured actuator and end-effector, this paper creates the soft gripper system with the bistable property. The bistable mechanism allow us to store strain energy in the soft gripper. The storage and release of its strain energy can drive the soft gripper to achieve the goal of the rapid grasping. In order to achieve the bistable mechanism, the actuator is used to switch its open and closed state. In this way, its energy consumption can also be reduced. This paper covers the design, manufacturing and testing of the soft gripper system. In order to understand the overall dynamic behavior and characteristics of this system, this research uses finite element analysis to obtain a dynamic simulation of its core structure "waterbomb base" in the soft gripper system, and then compares and verifies it with the mathematical model and actual testing.
[1] N. Turner, B. Goodwine, M. Sen, “A Review of Origami Applications in Mechanical Engineering,” Journal of Mechanical Engineering Science, 2016.
[2] S. Li, J. J. Stampfli, H. J. Xu, E. Malkin, E. V. Diaz, D. Rus, R. J. Wood, “A Vacuum-driven Origami “Magic-ball” Soft Gripper,” IEEE International Conference on Robotics and Automation, 2019.
[3] J. Shu, P. Chirarattananon, “A Quadrotor With an Origami-Inspired Protective Mechanism,” IEEE Robotics and Automation Letters, 2019.
[4] X. Yu, H. Fang, F. Cui, L. Cheng, Z. Lu, “Origami-inspired Foldable Sound Barrier Designs,” Journal of Sound and Vibration, 2019.
[5] Z. Zhakypov, F. Heremans, A. Billard, J. Paik, “An Origami-Inspired Reconfigurable Suction Gripper for Picking Objects With Variable Shape and Size,” IEEE Robotics and Automation Letters, 2018.
[6] J. Shintake, V. Cacucciolo, D. Floreano, H. Shea, “Soft Robotic Grippers,” Advanced Materials, 2018.
[7] B. H. Hanna1, J. M. Lund, R. J. Lang, S. P. Magleby, L. L. Howell, “Waterbomb Base: A Symmetric Single-vertex Bistable Origami Mechanism,” Smart Materials and Structures, 2014.
[8] N. E. Russo, C. L. Zekios, S. V. Georgakopoulos, “Origami Multimode Ring Antenna Based on Characteristic Mode Analysis,” IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019.
[9] 3D列印線材介紹。[Online]. Available:
http://z3dfilament.pixnet.net/blog/post/176902881#pro, Accessed on: Aug. 2014.
[10] ABS或PLA?挑選線材的正確方法。[Online]. Available:
http://www.makezine.com.tw/abspla/, Accessed on: Dec. 2014.
[11] P. Boyraz, G. Runge, A. Raatz, “An Overview of Novel Actuators for Soft Robotics,” Actuators, 2018.
[12] M. Dastagiri, P. M. Maruthi, “Application of Axiomatic Design in Injection Molding Process,” IEEE, 2010.
[13] 張仁宗、吳宗霖,「微組裝系統之設計與實現」,智慧自動化產業期刊,2013。
[14] D. Sinar, G. K. Knopf, “Disposable Piezoelectric Vibration Sensors With PDMS/ZnOtransducers on Printed Graphene-cellulose Electrodes,” Sensors and Actuators A: Physical, 2020.
[15] B. Kwak, J. Bae, “Integrated Design and Fabrication of a Conductive PDMS Sensor and Polypyrrole Actuator Composite,” IEEE Robotics and Automation Letters, 2020.
[16] A. R. Mule, B. Dudem, H. Patnam, S. A. Graham, J. S. Yu, “Wearable Single-Electrode-Mode Triboelectric Nanogenerator via Conductive Polymer-Coated Textiles for Self-Power Electronics,” ACS Sustainable Chemistry & Engineering, 2019.
[17] Z. Wang, A. A. Volinsky, N. D. Gallant, “Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measuredby Custom-Built Compression Instrument,” Journal of Applied Polymer Science, 2014.
[18] C. Vlad, P. Gheorghe, O. N. Dumitru, “FEM Simulation on Uniaxial Tension of Hyperelastic Elastomers,” Applied Mechanics and Materials, 2014.
[19] K. Thanakhun, T. Puttapitukporn, “PDMS Material Models for Anti-fouling Surfaces Using Finite Element Method,” Engineering Journal, 2019.
[20] W. Crooks, G. Vukasin, M. O’Sullivan, W. Messner, C. Rogers, “Fin ray® effect Inspired Soft Robotic Gripper: From the Robosoft Grand Challenge toward Optimization,” Frontiers in Robotics and AI, 2016.
[21] D. Y. Khang, H. Jiang, Y. Huang, J. A. Rogers, “A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates,” Science, 2006.
[22] H. H. Lee, “Finite Element Simulations with ANSYS Workbench 12,” Schroff Development Corporation, 2010.
[23] D. Armani, C. Liu, N. Alum, “Re-Configurable Fluid Circuits by PDMS Elastomer Micromachining,” IEEE, 1999.
[24] V. Alizadehyazdi, M. Bonthron, M. Spenko, “An Electrostatic/Gecko-Inspired Adhesives Soft Robotic Gripper,” IEEE Robotics and Automation Letters, 2020.